Brett: The Good, The Bad, and The Ugly

By: Denise M. Gardner

The age-old controversy over the existence of Brettanomyces and its impact on wine quality continues to be a hot button topic in the wine industry.  Many will argue its ability to contribute to style as part of the natural terroir associated with where the grapes were grown.  Others point to the general lack of fruit flavor in Brett-rich wines, and common negligence to winery sanitation.

The truth?

As is the case of many wine production topics, it is likely that the truth lies somewhere in the middle, but the love-hate relationship with Brettanomyces lives on.

What is Brettanomyces (aka Brett)?

Brettanomyces bruxellensis (commonly known as Brett) is a yeast commonly found in wine, which may also be referred to in the wine literature as the Dekkera species.  While believed to come from the vineyard, it was first isolated from grapes post-veraison only recently: in 2006 (Renouf and Lonvaud-Funel, 2007).  Brett is also used and found in other fermented beverages including beer, hard cider, and distilled spirits.

In the winery, the use of wood has been identified as a primary source of Brettanomyces.  In fact, many report that new oak barrels have potential to bring Brett into the winery.  This is significant to wine producers, because it was originally thought that only old, used barrels could provide contamination sources of Brett.

However, knowing that Brett can come into the winery as native microflora to the wine grapes, it is probable to assume that any winery may have Brett populations within the production area.  Therefore, it is important for wineries to determine a way to manage Brett during various stages of wine production.

What does Brett do to wine?

Brett yeast typically imparts flavor characteristics to the wine, which can commonly be described using the following descriptors, although others exist:

  • Barnyard
  • Horse
  • Leather
  • Tobacco
  • Tar
  • Medicinal
  • Band-Aid
  • Wet Dog
  • Vomit
  • Plastic or Burnt Plastic
  • Smoky

Brett Aroma

These flavor descriptors are linked to the common generation of 4-ethyl guaiacol (4-EG) and 4-ethyl phenol (4-EP).  In some cases, concentrations of isovaleric acid have also been identified and quantified.  These aromatic/flavor compounds are developed as part of Brett’s metabolism.

Additionally, many winemakers have reported a “metallic bitterness” in the finish of many Brett-infected wines (Henick-Kling et al. 2000).

Regardless of its exact descriptors, the development of Brett-like flavors often leads to a suppression of the fruit flavors, native to the wine variety.  In many cases where people consider Brettanomyces a flaw, it is due to the fact that there are no residing fruit flavors left in the wine, as Brett tends to mask and dominate the wine flavor.

How does Brett survive in wine?

Brett has the unique ability to “hang out” in the wine until an opportune moment presents itself for growth and proliferation.  Brett can survive in wines, a low pH environment, is tolerant of sulfur dioxide, and does not appear hindered by relatively high concentrations of alcohol (~14%) (Iland et al. 2007).  Additionally, Brett can utilize many substrates that Saccharomyces yeast (i.e., wine yeast) cannot: malic acid, ethanol, wood sugars, higher levels of fructose, residual amino acids and nitrogen sources.  Therefore, a wine could be considered “dry” (<1.0 g/L residual sugar) and still experience a Brett bloom at some point during its production.

One key problem with Brett is the fact that it often “surfaces” post-bottling (Coulter 2012).  Therefore, if wineries are not conducting adequate analytical and sensory testing pre-bottling, or utilizing proper sterile filtration techniques, they may be bottling a Bretty wine without knowing it!  Coulter (2012) found that it is not unusual for only some bottles within a batch of wine bottled in the same day to have Brett blooms while others do not.  Many note that Brett growth is stimulated by oxygen ingress, and Coulter concluded that the variability associated with the oxygen transfer rate of natural cork closures may contribute to post-bottling variability of Brett blooms.  However, it is important to note that the incidence of Brett growth is not isolated to wines bottled with a natural cork closure.

General Prevention of Brettanomyces in the Winery

It is difficult for wineries to manage Brett once it has surfaced in the winery.  Wineries are encouraged to avoid purchases of old barrels unless they are aware and confident in the seller’s cleaning practices.  Even well-sanitized wineries may harbor Brett populations, and should not be considered risk-free.

Maintaining adequate environmental and equipment sanitation practices is helpful to minimize Brett in the winery.  Many industry members recommend proper barrel sanitation using steam or ozone to prevent or manage Brett.

Despite a winery’s best efforts, Brett is a possibility.  In incidences when there is a Brett bloom in a barrel, it is best to isolate those barrels from others.  Avoid contaminating “clean” barrels or tanks.  Using sterile filtration prior to bottling is recommended for wines that contain Brett to prevent blooms in the bottle.

Winery cleanliness and sanitation is an important component in reducing microbial contamination risks throughout various stages of wine production.  The above image shows an example of good cleaning and sanitation practices.  Photo by: Denise M. Gardner

Winery cleanliness and sanitation is an important component in reducing microbial contamination risks throughout various stages of wine production. The above image shows an example of good cleaning and sanitation practices. Photo by: Denise M. Gardner

References Cited

Coulter, A. 2012. Post-bottling spoilage – who invited Brett? Practical Winery & Vineyard Journal.

Henick-Kling, T., C. Egli, J. Licker, C. Mitrakul, and T.E. Acree. 2000. Brettanomyces in Wine. Presented at: The Fifth International Symposium on Cool Climate Viticulture and Oenology, 16-20 January, 2000 in Melborne, Australia.

Iland, P., P. Grbin, M. Grinbergs, L. Schmidtke, and A. Soden. 2007. Microbiological analysis of grapes and wine: techniques and concepts. ISBN: 978-0-9581695

Renouf, V. and A. Lonvaud-Funnel. 2007. Development of an enrichment medium to detect Dekkera/Brettanomyces bruxellensis, a spoilage wine yeast, on the surface of grape berries. Microbiol. Res. 162(2):154-167.

Advertisements

Tags: , , , , , ,

5 responses to “Brett: The Good, The Bad, and The Ugly”

  1. Bruce says :

    In those isolated barrels; what do you use to kill it ??

    • psuenology says :

      Hi Bruce, This is a great question. You would have to get rid of the isolated barrel to avoid future contamination. Once there is established Brett presence in the barrel, it is very difficult to get rid of the Brett from inside the wood crevices.

  2. Andy Cannizzaro says :

    An excellent article, Denise!
    Aside from wooden barrels, what are some of the more effective Brett sanitation methods? Is there a way to analyze for it, such as taking swipes of various surfaces in the winery?

  3. Stacy says :

    This has shown up in my home brew saké. It smells fine and tastes ok (this was not present yesterday). I’m unsure if this needs to be tossed. Can you offer any feedback?

Leave a Reply to psuenology Cancel reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: