2017 Summer Disease Management Review

By: Bryan Hed

As we move into the post-bloom period, we are reminded that the immediate pre-bloom spray and the first post bloom spray are the most important you’ll make all season. These two sprays protect the nascent crop during its most vulnerable period and are essential to a fruit disease management program for control of the four major grape diseases; powdery and downy mildew, black rot, and Phomopsis. Use ‘best’ materials, shortest intervals, best coverage, etc., for those two sprays, EVERY YEAR! No matter what varieties you grow, those two sprays are the most important for protection of your crop. For growers of Vitis vinifera and many of the French hybrids, the second and perhaps third post-bloom sprays are also of critical importance, especially in a wet year and in vineyards that have already developed some observable level of disease this season. That said, let’s review these major diseases.

First, there’s Black rot caused by the fungus Guignardia bidwellii. This fungus can infect all immature green parts of the vine: fruit, shoots, leaves, and tendrils. On leaves, infections start out as small light green spots visible on the upper surface gradually turning brown to reddish-tan as infected tissue dies (Figure 1). Small, black, pimple-like bodies (pycnidia) develop inside the spot or lesion, usually arranged in a loose ring just inside the dark brown edges of the spot (Figure 1). Spores of the fungus are formed within pycnidia, and are released and splashed around during rainfall periods. Leaves remain susceptible as long as they are expanding and the size of leaf lesions indicate when, during expansion, the leaf was infected. For example, small lesions result when leaves become infected near the end of their expansion. Large lesions indicate the leaf was infected early in expansion. However, numerous small lesions, when clustered, may coalesce to damage large portions of the leaf. The death of large portions of the leaf blade may cause the entire leaf to die and abscise, but this is rare. On petioles, black, elongated lesions may induce wilting or abscission of leaves. Infections on berries initially appear as small, tan spots that develop a dark outer ring and expand rapidly to rot the entire berry. The brown berry shrivels into a hard, black, wrinkled mummy studded with spore producing pycnidia (Figure 2). Once the caps come off during bloom, berries of most varieties are highly susceptible for about 3-4 weeks, gradually developing resistance 5-6 weeks after capfall. Infections that take place during peak susceptibility generally show symptoms within 10-14 days. As berries develop resistance to black rot, the time for infections to become manifest takes longer, and infections that occur toward the end of the susceptibility period (second half of July?) may not develop symptoms until veraison.

Fig. 1 Development of black rot lesions on grapevine leaf (Concord).


Fig. 2 Development of black rot lesions on grape berry (Concord).

On shoots, lesions appear as elongated or elliptical brown cankers. Pycnidia may be clumped in the center of the lesion and/or line the margins of the lesion (Figure 3). These pycnidia produce spores during the current season and can be a source of further infection to fruit. These lesions remain on the shoots after they have “hardened off” and can survive over winter to release spores again the following spring. Large shoot lesions may render the shoots susceptible to breakage by wind, but this is rare.

Fig. 3 Black rot shoot lesions (Concord).

As berries develop resistance, the appearance of new infections may change: circular lesions are black, expand more slowly, and may remain small, often failing to affect the entire berry (Figure 4). Likewise, leaf infections that take place at the very end of the susceptibility/expansion period may become manifest as small dark pinhead size spots that do not expand (Figure 4).

Fig. 4 Limited black rot lesion development from infections occurring toward the end of the susceptibility period (Concord).

Cultural and chemical control:

The black rot pathogen survives the winter in infected grape tissue (primarily fruit mummies) which serves as a source of inoculum (spores) the following season.  Inoculum that remains in the trellis poses a much greater risk than inoculum dropped to the ground. Therefore, one of the most important methods of cultural control of black rot is removal of infected material, particularly fruit and cluster material, from the trellis. Once on the ground, mummy viability is reduced to further improve control. To take matters a step further, row middles can be plowed and hilling up under the row can bury mummies directly under vines. Maintaining an open canopy where fruit and other susceptible tissue dry out as quickly as possible after rainfall, will also help reduce this disease and improve fungicide penetration and coverage of the fruit.

Chemical control options for black rot mostly include two modern active ingredient classes like the strobilurins (azoxystrobin, kresoxim-methyl, pyraclostrobin, trifloxystrobin) and the sterol inhibitors (tebuconazole, tetraconazole, difenoconazole, myclobutanil) as well as the old standards like captan, mancozeb, and ziram. All are quite effective. The strobilurins and sterol inhibitors are more rainfast than the old standards and the sterol inhibitors have the capacity to stop the progress of an existing infection if applied within about 3 days after the infection period.

Scouting can be an important part of a black rot control program. The presence of pre-bloom leaf infections, especially those in the fruit zone, may indicate the presence of an over-wintering source of inoculum in the trellis and high risk of fruit infection after capfall. Fruit infections can occur during bloom and anytime up to 5-6 (native varieties) to 7-8 (Vitis vinifera) weeks after bloom.

In most parts of Pennsylvania, downy mildew first became active during the second half of May; at about the 5-6 leaf stage of grapevine development. Up here along the southern shore of Lake Erie, our first infection period occurred on May 25 (rainfall with temperatures above about 52 F) and first symptoms were observed at our farm on unprotected suckers of Chardonnay on June 1 (about 6-7 days after infection). On leaves, the first infections of downy mildew appear as yellowish ‘oil spots’ on the top of the leaf that coincide with a white, fluffy or downy patch of sporulation on the lower surface. On young shoots and clusters, early symptoms may first cause cluster rachises and shoots to thicken and curl (Figure 5).  As the pathogen, Plasmopara viticola, aggressively colonizes young, expanding grape tissue, infected shoots, clusters, and leaves may turn brown and die. When berries are infected later in the season their development is hindered and they fail to soften at veraison, turning a pale mottled green (white varieties) to red or pink (red varieties, Figure 6). Inflorescences and fruit clusters are most susceptible from about 2 weeks pre bloom to about 2 weeks post bloom. Highly susceptible varieties will require protection through 3-4 weeks post bloom because cluster stem tissue may remain susceptible until later in the season (after fruit have already become resistant) and cluster stem infections can still result in fruit loss. Young leaves and shoots are very susceptible, but become somewhat more resistant as they mature.

Fig. 5 Infection of downy mildew on young cluster and shoot showing curling and thickening of diseased tissue (Chancellor). The white sporulation after a warm humid night can be striking.


Fig. 6 Berries of red varieties (Concord (left) and Chancellor (center) at harvest) often turn red or pink after infection and fail to soften and develop properly. Late season leaf infections (far right photo) are yellowish to reddish brown and appear angular or blocky.

Cultural and chemical control:

Because the first inoculum arises from the vineyard soil, cultivation in early spring can help to bury over-wintering inoculum in old leaves and clusters on the ground, reducing primary inoculum in spring (much like with black rot). The first infections in spring often occur on shoots and sucker growth near or on the ground, and prompt elimination of this tissue can delay the occurrence of the first infections in the canopy. Also, the maintenance of an open canopy, where fruit and other susceptible tissue dry out as quickly as possible after rainfall and dew, will help minimize disease development.

There are many chemical options for downy mildew control and the best materials should be applied around and shortly after bloom. Active ingredients found in Ridomil, Zampro, Presidio, and Revus (and Revus Top) have been most effective on downy mildew in our trials. Where strobilurins are still working on this disease (no resistance yet), Abound (except in Erie county), Pristine, and Reason have been very effective too. The phosphorus acid formulations like Phostrol, Prophyt, and Rampart to name a few, have also been very effective against downy mildew, but generally cannot be expected to provide good control beyond 10 days after application, especially under high disease pressure. A tank mix of Ranman (cyazofamid) and phosphorus acid has been shown to be very effective on downy mildew in many university trials. All these aforementioned materials are very rainfast. In addition to these fungicides are the old standards that are strictly surface protectants and are more subject to removal by rainfall. A mancozeb product is probably the best among this group, but fixed copper fungicides can also be quite effective against downy mildew on varieties that are not sensitive to copper. Ziram and captan can also be part of an effective downy mildew program, but are somewhat less effective than mancozeb.

Powdery mildew is caused by the fungus Uncinula necator.  Infection on leaves appears mainly on the upper surface as white, powdery patches, though the undersides of leaves can also become infected (Figure 7). As the leaf surface becomes covered with the fungus, leaf function (and photosynthesis) is impaired, with varieties of V. vinifera and highly susceptible French hybrids being most severely affected. Infection by U. necator can stunt growth of new tissues and severe infection of young expanding leaves often results in cupping and distortion of leaves. Cluster infections around bloom may lead to poor fruit set, while later infection can cause berry splitting.

Fig. 7 Powdery mildew on young, developing ‘Concord’ berries.

Though primary infections in spring (at least 0.1″ rainfall and greater than 50 F) require rainfall for spore release, secondary disease cycles that result from primary infections, do not require rainfall.  Under optimum weather conditions (temperatures in the mid 60s to mid 80s F) secondary disease cycles can be repeated every 5 to 7 days, allowing for explosive increase of disease in the vineyard, especially in highly susceptible wine varieties. Note that optimum temperatures for the fungus are the norm through most of the summer in Pennsylvania and that starting around bloom, nearly every day is an infection period, rain or shine.

In most grape varieties, berries are highly susceptible to infection from the immediate pre-bloom stage until about 2-3 weeks after fruit set, and efforts to protect fruit with fungicides should concentrate on this critical period with timely applications every 7-14 days. Cluster rachises and leaves remain susceptible until harvest and their need for continued protection depends on varietal susceptibility, crop size, and weather. For example, after the fruit susceptibility period, further management of leaf and rachis infections may not be necessary on Concord and other native juice varieties unless vines are heavily cropped or ripening conditions are poor.  On the other hand, V. vinifera and susceptible hybrids, may require management of foliar mildew until at least veraison or beyond.

Cultural and chemical control:

There are cultural considerations that can reduce opportunities for powdery mildew disease development.  Most involve limiting humidity and promoting sun exposure to all parts of the vine. For example, a training system that improves air movement through the canopy, prevents excess shading and humidity and promotes fungicide penetration to the cluster zone which will help reduce powdery mildew development. Sunlight is lethal to powdery mildew and regular exposure of leaves and fruit can greatly reduce mildew development. Good weed control can also minimize humidity levels that contribute to mildew development.

Unfortunately, cultural measures can only serve as an enhancement to a chemical control program in Pennsylvania and other parts of the northeast. However, we have many effective fungicides for powdery mildew that can provide high levels of control through the critical period around bloom: Vivando, Quintec, Luna Experience, Endura, and now Aprovia. Aprovia is also labeled for black rot control, but our recent tests have indicated that Aprovia’s black rot efficacy is limited especially under high disease pressure on susceptible varieties. The difenoconazole products (Revus Top, Quadris Top, Inspire Super) can also be very effective on powdery mildew, though they may best be used outside the critical two spray period around bloom. Be aware that difenoconazole has been found to cause injury to Concord and a few other varieties (read the label). Sulfur can be an effective powdery mildew material too (on sulfur tolerant varieties) and many wine grape growers rely heavily on it, especially as a tank mix pre-bloom with mancozeb for all diseases. However, it is not recommended as a ‘stand-alone’ material during the critical fruit protection period for powdery mildew control.

There are lots of ‘alternatives’ for powdery mildew control that may be appropriate for late season sprays (to maintain a clean vineyard) that may gradually be used to replace the sulfur and/or synthetics or rotate with synthetics, particularly for reds where late sulfur applications can create wine quality issues. These are materials for which there is little risk of the development of resistance. In fact, these materials can be used to manage the development of resistance to our more risky synthetic fungicides mentioned earlier. Petroleum based oils like JMS Stylet-oil are very effective at 1-2 % solution, but excessive use late in the season (do not apply around or after veraison) may limit sugar accumulation and fruit maturity.  And, oils should not be tank mixed with sulfur or applied within 14 days of a sulfur-containing fungicide application. Copper, is moderately effective on powdery mildew and generally applied with lime to reduce the risk of phytotoxicity (read the label). Like sulfur, copper fungicides should not be applied under slow drying conditions as this increases the chance for plant injury. Other materials include potassium bicarbonates such as Kaligreen, Armicarb O, and Milstop.  These materials generally produce modest results, and are most effectively applied at short intervals (7 days) to achieve satisfactory control on susceptible varieties.  Again, these materials are not appropriate for the critical fruit protection period, but are best integrated during the early season when disease pressure is low OR after the critical fruit protection period to help control leaf infections.

Phomopsis cane and leaf spot is caused by the fungus, Phomopsis viticola. Earlier this spring, growers in many parts of Pennsylvania experienced problems with Phomopsis development on new shoots and leaves. Prolonged wetting/rainfall during the first week of May led to widespread infection by this pathogen on Concord in the Lake Erie region; virtually every shoot of every vine in every Concord vineyard we have examined has some level of Phomopsis development on the first one or two internodes. The infection period(s) occurred when shoots were in the 1-3″ range and inflorescences were just becoming exposed. In some cases, heavy infection of inflorescences is likely to result in problems with fruit rot after veraison (months after the infection period took place!). Fruit are generally at risk of new infections until a couple weeks or so after bloom, but infections of the cluster stem tissue that occur in the early pre-bloom period can move into berries during ripening and cause fruit to rot and shell before harvest. The concentration of heavy infection at the base of the oldest internodes, may result in large scabby areas that weaken the shoot (Figure 8) and green shoots that are severely infected are more apt to break under windy conditions. Leaf infections appear as pinhead sized black spots surrounded by a yellow halo (Figure 9). These infections appear to be of little consequence, other than revealing the presence of the pathogen. Lesions on cluster stems are black and sunken, and can girdle parts of the cluster rachis causing the cluster or parts of the cluster to break off or shrivel.

Fig. 8 Numerous lesions concentrated at the base of the oldest internodes result in larger scabby areas that weaken the shoot.


Fig. 9 Leaf infections of Phomopsis cane and leaf spot on Concord grape.

When berries are infected, they can remain symptomless until ripening when they turn brown and become studded with small pimple-like fruiting structures of the fungus (Figure 10) often resembling black rot infected berries.

Fig. 10 Phomopsis fruit rot on ripe Vignoles and Niagara grapes.

However, even though direct fruit infection by both pathogens can occur during the same peak susceptibility period (bloom through 3-4 weeks after bloom), black rot fruit rot symptoms become observable while berries are still green, whereas Phomopsis fruit infections lay dormant until after ripening. Also, leaf symptoms of these two diseases are very different from each other and can be used to determine which pathogen(s) are present and most likely to have caused disease on nearby fruit.

Cultural and chemical control:

Hand pruning to remove dead wood and pruning stubs from the trellis removes much of the over-wintering inoculum of Phomopsis. For this reason, cane pruning can reduce the disease compared to a cordon system that retains a maximum amount of older wood. Trellis systems that train shoots upward also reduce infections on the oldest shoot internodes and clusters. And of course, the maintenance of an open canopy where fruit and other susceptible tissue dry out as quickly as possible after rainfall, will help minimize disease development.  For wine grapes, fruit zone leaf removal and shoot thinning reduce canopy density, hasten drying after rainfall, and improve fungicide penetration and coverage of the fruit.

Phomopsis management with fungicides should continue through the first or second post bloom spray, after which inoculum of the fungus is generally spent. Strobilurins, mancozeb products, Captan, and Ziram are generally the only effective materials for Phomopsis control. Some formulations of sterol inhibitor fungicides claim Phomopsis control, but their level of efficacy is still under question and would not be recommended for management of this disease.


Much of the information in this blog can be found in the 2017 New York and Pennsylvania Pest Management Guidelines for Grapes. Be sure to get your copy through Cornell University press. You can also read the publication; Disease Management Guidelines for Organic Grape Production in the Lake Erie Region found online at http://agsci.psu.edu/research/ag-experiment-station/erie/research/plant-pathology/organic-grape-disease-management-trials/DiseaseMgmtGuidelines07.pdf which contains much of the information discussed in this blog.



2017 New York and Pennsylvania Pest Management Guidelines for Grapes. Edited by Tim Weigle and Andy Muza. Cornell and Penn State University Cooperative Extension.

Hoffman, L.E., W.F. Wilcox, D.M. Gadoury and R.C. Seem. 2002. Influence of grape berry age and susceptibility to Guignardia bidwellii and its incubation period length. Phytopathology 92:1068-1076.

Hoffman, L.E., W.F. Wilcox, D.M. Gadoury, R.C. Seem, and D.G. Riegel. 2004. Integrated control of grape black rot: Influence of host phenology, inoculum availability, sanitation, and spray timing. Phytopathology 94: 641-650.


Tags: , , , , , , , , , , ,

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: