Growth Regulator Herbicides Negatively Affect Grapevine Development: Identification of Herbicide Drift Damage, How to Prevent it, and What to do if it Occurs in your Vineyard

By: Michela Centinari

The Penn State Extension grape team has been receiving reports on herbicide drift damage in vineyards from a number of Pennsylvania wine grape growers this growing season, definitely many more than in previous years. All herbicides registered for grapes can potentially harm the vines if not applied in accordance to the pesticide label (e.g., glyphosate products) [1]. However, in many of the reported cases through the 2017 growing season the damage was caused by herbicides not registered for grapes, which drifted into the vineyards from nearby fields.

Damage from herbicide drift is, unfortunately, something that grape growers across the country are too familiar with. It represents an economic threat for the grape and wine industry and should not be underestimated. Herbicide drift damage can, indeed, result in significant crop losses which may extend to multiple seasons, and in some cases it also results in vine death. Several extension web resources are available to assist grape growers in preventing and dealing with herbicide drift damage. Some of them are listed at the end of this article, including one from Andy Muza, extension educator at Penn State (Growth Regulator Herbicides and Grapes Don’t Mix).

Due to the increase in reports of herbicide drift damage in Pennsylvania vineyards it seems appropriate to discuss some key points surrounding this issue. This article will review how to identify herbicide drift symptoms, what measures grape growers and pesticide applicators can take to prevent herbicide drift, and what steps to take if the drift occurs.

Plant growth regulators (PGR) herbicides are those most likely to injure grapevines, mainly through drift.

I will only focus on the herbicides which belong to the plant growth regulators (PGR) mode of action group. Common active ingredients of PGR herbicides are 2,4-D (2,4-Dichlorophenoxyacetic acid; phenoxy family), dicamba (benzoic acid), tricolopyr or picloram (pyridine family). A partial list of common PGR herbicides as well as other herbicides that may injure grapevines can be found at Preventing Herbicide Drift and Injury to Grapes, Table 1.

PGR herbicides are widely used for controlling broadleaf weeds in many crops, such as wheat, corn, soybean, pasture, rangeland, etc. They are also frequently utilized to control unwanted broadleaf vegetation in turf, by railroads, road ditches, fence lines, and rights-of-way. These herbicides are not registered for use with grapes. However, when applied to a nearby field, they can drift into the vineyard and cause significant injury to grapevines.

Most of the herbicide drift damage reported this season by Pennsylvania grape growers were caused by drift of PGR herbicides (Figure 1). Physiological symptoms to PGR exposure is not too surprising because grapevines are extremely sensitive to PGR herbicides, including the phenoxy, benzoic, and pyridine classes of compounds [2]. For example, herbicides containing 2,4-D can damage grapes at a concentration 100 times lower than the recommended label rate. Moreover, drift from PGR herbicides can injure grapevines located half a mile or more from the application site.

Figure 1. 2,4-D damage on Grüner Veltliner in Pennsylvania. The leaves are severely distorted, the shoot tip died, and bloom failed.

What is “drift”?

Drift is defined as “the movement of herbicides off the site where they were applied” [3]. Non-target drift can occur either as spray drift or vapor drift. Spray drift occurs during herbicide application when small droplets move off the application site under unfavorable wind conditions. Vapor drift occurs after herbicide application as the spray material volatizes or evaporates and is carried away from the application site by wind or temperature inversions. Some PGR herbicides, such as ester formulations of 2,4-D, readily volatilize, especially when used under high temperatures and low humidity conditions (high vapor pressure) [3].

How PGR damage occurs in grapevines

PGR herbicides mimic auxins, plant hormones that regulate growth and development. Applications of PGR herbicides disrupt plant hormone balance causing growth abnormalities. PGR herbicides can be absorbed by both roots and leaves, however grapevines are usually injured through foliar absorption.

How to tell if the vines have been damaged by PGR herbicide drift

Damage from PGR herbicides typically appears within 2 days of the drift occurrence. Herbicide drift can damage leaves, shoots, flowers, and fruit. Leaf symptoms are often easy to recognize, but sometimes can be mistaken with those of fanleaf degeneration, a viral disease [3]. Growers can send pictures of damaged vines to a local extension specialist for confirmation.

Typical symptoms include:

  • Distorted leaf appearance: Symptoms are typically more severe on the youngest leaves and shoot tips. Affected leaves are “smaller, narrow, deformed, and they have closely packed, thick veins that lack of chlorophyll” [4]. They may also have a distinct fan-shape appearance, and depending on the herbicide’s active ingredient, they can bend downward or cup upward (Figures 2, 3). Leaves may or may not outgrow the symptoms, it largely depends on the severity of the injury and other factors listed in the following section (“Factors affecting the severity of injury”). It is also common to see regrowth of deformed leaves after drift exposure [3].

Figure 2. Leaf cupping caused by improper application of Stinger (PGR-herbicide). Photo credit: Rob Crassweller.

Figure 3. 2,4-D injury on leaves. Photo on the left: A. Muza, Penn State.

  • Shoot growth: Damaged shoot tips rarely resume growth, but lateral shoots can keep growing giving in some cases a “bushy” appearance to the vine resulting in a highly shaded canopy and poor fruit sun exposure.
  • Flower clusters (inflorescences): symptoms can include aborted or failed flowers, and poor fruit set (Figure 4). If the injury is severe enough it can cause reduced yield at harvest and poor fruit quality, in addition to potentially illegal residues of herbicide on the exposed crop.

Figure 4. 2,4-D herbicide drift damage on Grüner Veltliner flower clusters. Photo taken on July 19, 2017 approximately two months after the herbicide drift incident. Notice only two berries developed properly (circled in the photo).

In some cases, depending on the timing and level of drift exposure, floral symptoms may be much more pronounced than those on the leaves making the diagnosis more difficult (i.e., growers may relate poor fruit set or dead flowers to other causes rather than herbicide drift) (Figure 5).

Figure 5. 2,4-D herbicide drift damage on Riesling flower clusters. Photo taken on June 26, 2017. Notice the leaves around the clusters look healthy.

If the damage occurs early in the season, between bud burst and bloom, as it usually does, a significant reduction in healthy leaf area during the period of rapid shoot growth may affect vine photosynthetic capacity, lowering vine ability to fully ripen the crop and possibly its ability to survive cold winters.

Unfortunately there is no guarantee that the vines will fully and rapidly recover from herbicide drift damage. Carry-over effects into the following years, such as reduction in vine vigor, yield, fruit quality, and increased susceptibility to diseases, are common if the damage is extensive and/or the vines have been repeatedly exposed to PGR-herbicide drift. Finally, vines may die as a consequence of their weakened condition [2].

What factors affect the severity of PGR-herbicide drift damage?

Some of the most important factors affecting the severity of drift damage are:

  • Vine growth stage at the time of exposure. Grapevines are always sensitive to PGR herbicides, but they are most susceptible during the early part of the growing season, from bud burst through bloom. While dependent on the growing season and site, in Pennsylvania this usually occurs around April through June. Early in the growing season shoots are rapidly growing and PGR herbicides are quickly translocated to the shoot tip, where the natural concentration of auxins is greatest inside the grapevine. If exposure occurs later in the season, vines typically outgrow the damage and still produce good yield [5].
  • Vine age: Younger plants are more vulnerable and they have a lower ability to recover from the PGR herbicide damage than mature vines. Young vines may be killed even at low exposures [6].
  • Level of exposure: Higher concentration and/or repeated exposures will result in higher disruption of the vine’s physiology and lower ability of the vines to rapidly and fully recover from the damage [3].
  • Grapevine variety. All grapevine varieties are sensitive to PGR herbicides, but some may show more visual and physiological symptoms than others (see for example Table 1, Questions and Answers about Vineyard Injury from Herbicide Drift)
  • Other factors include herbicide concentration and formulation (for example ester formulations of 2,4-D are more volatile than amine formulations, thus ester formulations of 2,4-D are more prone to move off-target as vapor), weather conditions (temperature, humidity, and most importantly wind speed) at the time of herbicide application.

What is the best strategy to protect vines from herbicide drift injury?

Prevention is undoubtedly the best strategy for grapevine growers to avoid herbicide damage. To reduce the risk of herbicide drifting into their vineyard, vineyard managers and/or owners should be proactive. Some prevention steps both grape growers and nearby growers of other crops can take are listed below:

  • Maintain good relations with neighbors. Vineyard owners and managers should make sure their neighbors within approximately a half-mile to 1 mile radius, are aware that vines are extremely sensitive to PGR herbicides [3]. It is also recommended to encourage neighbors to “use drift-reduction spray nozzles (nozzles that produce large droplets) and to select herbicides that are less likely to injure grapes” [3]. If growers of other crops are unaware of damage to grapevines, collecting information such as this blog post, may be an important educational tool to share. Mike White, viticulture extension specialist at Iowa State University, suggests to share an aerial map of the property showing the vine­yard location with neighbors and commercial pesticide applicators to increase their awareness. It is also recommended to communicate the presence of the vineyard to state and county highway departments.
  • Windbreak (shrubs, trees, physical barriers) and a buffer area between the vineyard and the edge of the field being sprayed are always a good idea. Penn State offers a free publication or pdf print-out regarding windbreaks: http://extension.psu.edu/publications/uh172/view
  • For those states where the service is available, growers can register the location of their vineyard on https://driftwatch.org/. This online service is not available in Pennsylvania, but in many Midwestern states growers and pesticide applica­tors can use this web resource free of charge to report (growers) and locate (applicators) potential drift hazards.

Taking all these steps may not guarantee that herbicide drift will not occur in your vineyard, but increasing pesticide applicators awareness of grape sensitivity to PGR herbicides, the resulting economic loss, and potential litigation risks may very well serve the purpose.

Applicators should always follow all the measures available to minimize the risk of herbicide drift into a nearby vineyard or to other sensitive crops. Legal complaints may result in expensive settlements. In an extreme example, an owner of a 150-acre vineyard in Australia was awarded AUS$ 7M in damages over pesticide drift (Grape grower Awarded $7M in damages over spraying) that occurred from 2013 to 2015.

If PGR herbicides are applied after vine bud burst, applicators should consider eliminating volatile compounds and apply only non-volatile products.

Extension personnel could also facilitate communication between grape and crop field growers as it happens in Long Island, NY. Extension personnel from Cornell University-Long Island, including Alice Wise and Andy Senesac, organized a meeting with local grape and sod growers to tackle the herbicide drift issue which was affecting local grape growers without having to resort to regulatory restrictions. The result of that meeting was a ‘gentleman’s agreement’ not to spray herbicides containing 2,4-D after April 15, around bud burst for the earliest grapevine varieties in Long Island. To keep all parties informed, extension sends out a weekly reminder about this issue.

What to do if the drift occur

Here some key steps Mike White put together on what to do right after a drift incident [7]:

  1. Identify area affected.
  2. Document the date, time and growth stage of the grapes.
  3. If possible, identify the source of the drift and make a determination if you want to settle the problem amongst your neighbors.
  4. Contact your state department of agriculture (Pennsylvania Department of Agriculture, PDA) as soon as possible if you cannot determine the source of the drift and/or you want to formalize the complaint (30 – 45 day deadline in many states).
  5. Flag both affected and unaffected plants, take high reso­lution pictures weekly until symptoms subside and measure final yields per plant.
  6. Severe injury settlements should be delayed until after next season’s harvest. Photo and yield documentation should be continued. Unless the settlement offered seems exceptionally lucrative, I would suggest delaying any settlements until after next season’s harvest to assess for potential carry-over vine damage.

For information on where to find a drift consultant please refer to Need Help? Pesticide Drift Consultants

How to estimate the loss in revenue

Tim Martinson, viticulture extension specialist at Cornell University, provided useful examples on how to estimate the economic loss associated with herbicide drift damage under different scenarios. Scenarios include vine recovery across multiple years, with and without the need of vines replacement. Please refer to: Diagnosis, Economics, Management of Grape Injury from 2,4D and other Growth Regulator Herbicides.

How to manage damaged vines

There is limited information available on best management practices for vines affected by herbicide drift damage. To favor a full and a rapid recovery it is recommended to still implement  good management practices and avoid further stress to damaged vines, as for example over cropping (assuming damaged vines have fruit). Fungicide applications made to protect the fruit should not be necessary if the fruit has been removed [8]. It is also recommended to adjust pruning strategies to smaller vines, with the intent of regaining full vine size [9].

 

Resources

  1. Growth regulator herbicides and grapes don’t mix. Penn State. https://psuwineandgrapes.wordpress.com/2015/10/16/growth-regulator-herbicides-and-grapes-dont-mix/
  2. Watch out for: Grapes. Purdue University. DW-10-W. https://www.extension.purdue.edu/extmedia/ho/dw-10-w.pdf
  3. Preventing herbicide drift and injury to grapes. Oregon State University. EM 8860. http://extension.oregonstate.edu/yamhill/sites/default/files/spray_drift/documents/3-preventing_herbicide_drift_to_grapes_osu_8660.pdf
  4. Avoid phenoxy herbicide damage to grapevines. Texas Cooperative Extension. http://winegrapes.tamu.edu/files/2015/11/phenoxy1.pdf
  5. Avoiding 2,4-D injury to grapevines. Colorado State University. http://webdoc.agsci.colostate.edu/cepep/FactSheets/Avoiding%202,4-D%20Injury%20to%20Grapevines.pdf
  6. Questions and answers about vineyard injury from herbicide drift. Kansas State University. MF-2588. https://www.bookstore.ksre.ksu.edu/pubs/MF2588.pdf
  7. Need Help? Pesticide drift consultant. Northern Grapes Project. http://northerngrapesproject.org/wp-content/uploads/2013/01/11-3-NE-Find-Drift-Consultant.pdf
  8. Top 10 questions about herbicide drift into vineyards. Iowa State University. https://www.extension.iastate.edu/wine/growersnews/243-may-29-2013#Top
  9. The view from New York: Diagnosis, economics, management of grape injury from2,4‐D and other growth regulator herbicides. Northern Grapes Project. http://northerngrapesproject.org/wp-content/uploads/2013/01/Martinson-2-4D-Presentation.pdf
Advertisements

Tags: , , , , , , , , , , , , ,

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: