Archive | Season Reviews RSS for this section

2017 Summer Disease Management Review

By: Bryan Hed

As we move into the post-bloom period, we are reminded that the immediate pre-bloom spray and the first post bloom spray are the most important you’ll make all season. These two sprays protect the nascent crop during its most vulnerable period and are essential to a fruit disease management program for control of the four major grape diseases; powdery and downy mildew, black rot, and Phomopsis. Use ‘best’ materials, shortest intervals, best coverage, etc., for those two sprays, EVERY YEAR! No matter what varieties you grow, those two sprays are the most important for protection of your crop. For growers of Vitis vinifera and many of the French hybrids, the second and perhaps third post-bloom sprays are also of critical importance, especially in a wet year and in vineyards that have already developed some observable level of disease this season. That said, let’s review these major diseases.

First, there’s Black rot caused by the fungus Guignardia bidwellii. This fungus can infect all immature green parts of the vine: fruit, shoots, leaves, and tendrils. On leaves, infections start out as small light green spots visible on the upper surface gradually turning brown to reddish-tan as infected tissue dies (Figure 1). Small, black, pimple-like bodies (pycnidia) develop inside the spot or lesion, usually arranged in a loose ring just inside the dark brown edges of the spot (Figure 1). Spores of the fungus are formed within pycnidia, and are released and splashed around during rainfall periods. Leaves remain susceptible as long as they are expanding and the size of leaf lesions indicate when, during expansion, the leaf was infected. For example, small lesions result when leaves become infected near the end of their expansion. Large lesions indicate the leaf was infected early in expansion. However, numerous small lesions, when clustered, may coalesce to damage large portions of the leaf. The death of large portions of the leaf blade may cause the entire leaf to die and abscise, but this is rare. On petioles, black, elongated lesions may induce wilting or abscission of leaves. Infections on berries initially appear as small, tan spots that develop a dark outer ring and expand rapidly to rot the entire berry. The brown berry shrivels into a hard, black, wrinkled mummy studded with spore producing pycnidia (Figure 2). Once the caps come off during bloom, berries of most varieties are highly susceptible for about 3-4 weeks, gradually developing resistance 5-6 weeks after capfall. Infections that take place during peak susceptibility generally show symptoms within 10-14 days. As berries develop resistance to black rot, the time for infections to become manifest takes longer, and infections that occur toward the end of the susceptibility period (second half of July?) may not develop symptoms until veraison.

Fig. 1 Development of black rot lesions on grapevine leaf (Concord).

 

Fig. 2 Development of black rot lesions on grape berry (Concord).

On shoots, lesions appear as elongated or elliptical brown cankers. Pycnidia may be clumped in the center of the lesion and/or line the margins of the lesion (Figure 3). These pycnidia produce spores during the current season and can be a source of further infection to fruit. These lesions remain on the shoots after they have “hardened off” and can survive over winter to release spores again the following spring. Large shoot lesions may render the shoots susceptible to breakage by wind, but this is rare.

Fig. 3 Black rot shoot lesions (Concord).

As berries develop resistance, the appearance of new infections may change: circular lesions are black, expand more slowly, and may remain small, often failing to affect the entire berry (Figure 4). Likewise, leaf infections that take place at the very end of the susceptibility/expansion period may become manifest as small dark pinhead size spots that do not expand (Figure 4).

Fig. 4 Limited black rot lesion development from infections occurring toward the end of the susceptibility period (Concord).

Cultural and chemical control:

The black rot pathogen survives the winter in infected grape tissue (primarily fruit mummies) which serves as a source of inoculum (spores) the following season.  Inoculum that remains in the trellis poses a much greater risk than inoculum dropped to the ground. Therefore, one of the most important methods of cultural control of black rot is removal of infected material, particularly fruit and cluster material, from the trellis. Once on the ground, mummy viability is reduced to further improve control. To take matters a step further, row middles can be plowed and hilling up under the row can bury mummies directly under vines. Maintaining an open canopy where fruit and other susceptible tissue dry out as quickly as possible after rainfall, will also help reduce this disease and improve fungicide penetration and coverage of the fruit.

Chemical control options for black rot mostly include two modern active ingredient classes like the strobilurins (azoxystrobin, kresoxim-methyl, pyraclostrobin, trifloxystrobin) and the sterol inhibitors (tebuconazole, tetraconazole, difenoconazole, myclobutanil) as well as the old standards like captan, mancozeb, and ziram. All are quite effective. The strobilurins and sterol inhibitors are more rainfast than the old standards and the sterol inhibitors have the capacity to stop the progress of an existing infection if applied within about 3 days after the infection period.

Scouting can be an important part of a black rot control program. The presence of pre-bloom leaf infections, especially those in the fruit zone, may indicate the presence of an over-wintering source of inoculum in the trellis and high risk of fruit infection after capfall. Fruit infections can occur during bloom and anytime up to 5-6 (native varieties) to 7-8 (Vitis vinifera) weeks after bloom.

In most parts of Pennsylvania, downy mildew first became active during the second half of May; at about the 5-6 leaf stage of grapevine development. Up here along the southern shore of Lake Erie, our first infection period occurred on May 25 (rainfall with temperatures above about 52 F) and first symptoms were observed at our farm on unprotected suckers of Chardonnay on June 1 (about 6-7 days after infection). On leaves, the first infections of downy mildew appear as yellowish ‘oil spots’ on the top of the leaf that coincide with a white, fluffy or downy patch of sporulation on the lower surface. On young shoots and clusters, early symptoms may first cause cluster rachises and shoots to thicken and curl (Figure 5).  As the pathogen, Plasmopara viticola, aggressively colonizes young, expanding grape tissue, infected shoots, clusters, and leaves may turn brown and die. When berries are infected later in the season their development is hindered and they fail to soften at veraison, turning a pale mottled green (white varieties) to red or pink (red varieties, Figure 6). Inflorescences and fruit clusters are most susceptible from about 2 weeks pre bloom to about 2 weeks post bloom. Highly susceptible varieties will require protection through 3-4 weeks post bloom because cluster stem tissue may remain susceptible until later in the season (after fruit have already become resistant) and cluster stem infections can still result in fruit loss. Young leaves and shoots are very susceptible, but become somewhat more resistant as they mature.

Fig. 5 Infection of downy mildew on young cluster and shoot showing curling and thickening of diseased tissue (Chancellor). The white sporulation after a warm humid night can be striking.

 

Fig. 6 Berries of red varieties (Concord (left) and Chancellor (center) at harvest) often turn red or pink after infection and fail to soften and develop properly. Late season leaf infections (far right photo) are yellowish to reddish brown and appear angular or blocky.

Cultural and chemical control:

Because the first inoculum arises from the vineyard soil, cultivation in early spring can help to bury over-wintering inoculum in old leaves and clusters on the ground, reducing primary inoculum in spring (much like with black rot). The first infections in spring often occur on shoots and sucker growth near or on the ground, and prompt elimination of this tissue can delay the occurrence of the first infections in the canopy. Also, the maintenance of an open canopy, where fruit and other susceptible tissue dry out as quickly as possible after rainfall and dew, will help minimize disease development.

There are many chemical options for downy mildew control and the best materials should be applied around and shortly after bloom. Active ingredients found in Ridomil, Zampro, Presidio, and Revus (and Revus Top) have been most effective on downy mildew in our trials. Where strobilurins are still working on this disease (no resistance yet), Abound (except in Erie county), Pristine, and Reason have been very effective too. The phosphorus acid formulations like Phostrol, Prophyt, and Rampart to name a few, have also been very effective against downy mildew, but generally cannot be expected to provide good control beyond 10 days after application, especially under high disease pressure. A tank mix of Ranman (cyazofamid) and phosphorus acid has been shown to be very effective on downy mildew in many university trials. All these aforementioned materials are very rainfast. In addition to these fungicides are the old standards that are strictly surface protectants and are more subject to removal by rainfall. A mancozeb product is probably the best among this group, but fixed copper fungicides can also be quite effective against downy mildew on varieties that are not sensitive to copper. Ziram and captan can also be part of an effective downy mildew program, but are somewhat less effective than mancozeb.

Powdery mildew is caused by the fungus Uncinula necator.  Infection on leaves appears mainly on the upper surface as white, powdery patches, though the undersides of leaves can also become infected (Figure 7). As the leaf surface becomes covered with the fungus, leaf function (and photosynthesis) is impaired, with varieties of V. vinifera and highly susceptible French hybrids being most severely affected. Infection by U. necator can stunt growth of new tissues and severe infection of young expanding leaves often results in cupping and distortion of leaves. Cluster infections around bloom may lead to poor fruit set, while later infection can cause berry splitting.

Fig. 7 Powdery mildew on young, developing ‘Concord’ berries.

Though primary infections in spring (at least 0.1″ rainfall and greater than 50 F) require rainfall for spore release, secondary disease cycles that result from primary infections, do not require rainfall.  Under optimum weather conditions (temperatures in the mid 60s to mid 80s F) secondary disease cycles can be repeated every 5 to 7 days, allowing for explosive increase of disease in the vineyard, especially in highly susceptible wine varieties. Note that optimum temperatures for the fungus are the norm through most of the summer in Pennsylvania and that starting around bloom, nearly every day is an infection period, rain or shine.

In most grape varieties, berries are highly susceptible to infection from the immediate pre-bloom stage until about 2-3 weeks after fruit set, and efforts to protect fruit with fungicides should concentrate on this critical period with timely applications every 7-14 days. Cluster rachises and leaves remain susceptible until harvest and their need for continued protection depends on varietal susceptibility, crop size, and weather. For example, after the fruit susceptibility period, further management of leaf and rachis infections may not be necessary on Concord and other native juice varieties unless vines are heavily cropped or ripening conditions are poor.  On the other hand, V. vinifera and susceptible hybrids, may require management of foliar mildew until at least veraison or beyond.

Cultural and chemical control:

There are cultural considerations that can reduce opportunities for powdery mildew disease development.  Most involve limiting humidity and promoting sun exposure to all parts of the vine. For example, a training system that improves air movement through the canopy, prevents excess shading and humidity and promotes fungicide penetration to the cluster zone which will help reduce powdery mildew development. Sunlight is lethal to powdery mildew and regular exposure of leaves and fruit can greatly reduce mildew development. Good weed control can also minimize humidity levels that contribute to mildew development.

Unfortunately, cultural measures can only serve as an enhancement to a chemical control program in Pennsylvania and other parts of the northeast. However, we have many effective fungicides for powdery mildew that can provide high levels of control through the critical period around bloom: Vivando, Quintec, Luna Experience, Endura, and now Aprovia. Aprovia is also labeled for black rot control, but our recent tests have indicated that Aprovia’s black rot efficacy is limited especially under high disease pressure on susceptible varieties. The difenoconazole products (Revus Top, Quadris Top, Inspire Super) can also be very effective on powdery mildew, though they may best be used outside the critical two spray period around bloom. Be aware that difenoconazole has been found to cause injury to Concord and a few other varieties (read the label). Sulfur can be an effective powdery mildew material too (on sulfur tolerant varieties) and many wine grape growers rely heavily on it, especially as a tank mix pre-bloom with mancozeb for all diseases. However, it is not recommended as a ‘stand-alone’ material during the critical fruit protection period for powdery mildew control.

There are lots of ‘alternatives’ for powdery mildew control that may be appropriate for late season sprays (to maintain a clean vineyard) that may gradually be used to replace the sulfur and/or synthetics or rotate with synthetics, particularly for reds where late sulfur applications can create wine quality issues. These are materials for which there is little risk of the development of resistance. In fact, these materials can be used to manage the development of resistance to our more risky synthetic fungicides mentioned earlier. Petroleum based oils like JMS Stylet-oil are very effective at 1-2 % solution, but excessive use late in the season (do not apply around or after veraison) may limit sugar accumulation and fruit maturity.  And, oils should not be tank mixed with sulfur or applied within 14 days of a sulfur-containing fungicide application. Copper, is moderately effective on powdery mildew and generally applied with lime to reduce the risk of phytotoxicity (read the label). Like sulfur, copper fungicides should not be applied under slow drying conditions as this increases the chance for plant injury. Other materials include potassium bicarbonates such as Kaligreen, Armicarb O, and Milstop.  These materials generally produce modest results, and are most effectively applied at short intervals (7 days) to achieve satisfactory control on susceptible varieties.  Again, these materials are not appropriate for the critical fruit protection period, but are best integrated during the early season when disease pressure is low OR after the critical fruit protection period to help control leaf infections.

Phomopsis cane and leaf spot is caused by the fungus, Phomopsis viticola. Earlier this spring, growers in many parts of Pennsylvania experienced problems with Phomopsis development on new shoots and leaves. Prolonged wetting/rainfall during the first week of May led to widespread infection by this pathogen on Concord in the Lake Erie region; virtually every shoot of every vine in every Concord vineyard we have examined has some level of Phomopsis development on the first one or two internodes. The infection period(s) occurred when shoots were in the 1-3″ range and inflorescences were just becoming exposed. In some cases, heavy infection of inflorescences is likely to result in problems with fruit rot after veraison (months after the infection period took place!). Fruit are generally at risk of new infections until a couple weeks or so after bloom, but infections of the cluster stem tissue that occur in the early pre-bloom period can move into berries during ripening and cause fruit to rot and shell before harvest. The concentration of heavy infection at the base of the oldest internodes, may result in large scabby areas that weaken the shoot (Figure 8) and green shoots that are severely infected are more apt to break under windy conditions. Leaf infections appear as pinhead sized black spots surrounded by a yellow halo (Figure 9). These infections appear to be of little consequence, other than revealing the presence of the pathogen. Lesions on cluster stems are black and sunken, and can girdle parts of the cluster rachis causing the cluster or parts of the cluster to break off or shrivel.

Fig. 8 Numerous lesions concentrated at the base of the oldest internodes result in larger scabby areas that weaken the shoot.

 

Fig. 9 Leaf infections of Phomopsis cane and leaf spot on Concord grape.

When berries are infected, they can remain symptomless until ripening when they turn brown and become studded with small pimple-like fruiting structures of the fungus (Figure 10) often resembling black rot infected berries.

Fig. 10 Phomopsis fruit rot on ripe Vignoles and Niagara grapes.

However, even though direct fruit infection by both pathogens can occur during the same peak susceptibility period (bloom through 3-4 weeks after bloom), black rot fruit rot symptoms become observable while berries are still green, whereas Phomopsis fruit infections lay dormant until after ripening. Also, leaf symptoms of these two diseases are very different from each other and can be used to determine which pathogen(s) are present and most likely to have caused disease on nearby fruit.

Cultural and chemical control:

Hand pruning to remove dead wood and pruning stubs from the trellis removes much of the over-wintering inoculum of Phomopsis. For this reason, cane pruning can reduce the disease compared to a cordon system that retains a maximum amount of older wood. Trellis systems that train shoots upward also reduce infections on the oldest shoot internodes and clusters. And of course, the maintenance of an open canopy where fruit and other susceptible tissue dry out as quickly as possible after rainfall, will help minimize disease development.  For wine grapes, fruit zone leaf removal and shoot thinning reduce canopy density, hasten drying after rainfall, and improve fungicide penetration and coverage of the fruit.

Phomopsis management with fungicides should continue through the first or second post bloom spray, after which inoculum of the fungus is generally spent. Strobilurins, mancozeb products, Captan, and Ziram are generally the only effective materials for Phomopsis control. Some formulations of sterol inhibitor fungicides claim Phomopsis control, but their level of efficacy is still under question and would not be recommended for management of this disease.

 

Much of the information in this blog can be found in the 2017 New York and Pennsylvania Pest Management Guidelines for Grapes. Be sure to get your copy through Cornell University press. You can also read the publication; Disease Management Guidelines for Organic Grape Production in the Lake Erie Region found online at http://agsci.psu.edu/research/ag-experiment-station/erie/research/plant-pathology/organic-grape-disease-management-trials/DiseaseMgmtGuidelines07.pdf which contains much of the information discussed in this blog.

 

References:

2017 New York and Pennsylvania Pest Management Guidelines for Grapes. Edited by Tim Weigle and Andy Muza. Cornell and Penn State University Cooperative Extension.

Hoffman, L.E., W.F. Wilcox, D.M. Gadoury and R.C. Seem. 2002. Influence of grape berry age and susceptibility to Guignardia bidwellii and its incubation period length. Phytopathology 92:1068-1076.

Hoffman, L.E., W.F. Wilcox, D.M. Gadoury, R.C. Seem, and D.G. Riegel. 2004. Integrated control of grape black rot: Influence of host phenology, inoculum availability, sanitation, and spray timing. Phytopathology 94: 641-650.

Advertisements

2017 Pre-Bloom Disease Management Review and Discussion

By Bryan Hed

Another season of grape growing is upon us and it’s a good time to review important disease management principles and be aware of some of the tools to consider integrating into your vineyard management programs this spring.

First is your annual reminder to check out the NEWA website (Network for Environment and Weather Applications) found at http://newa.cornell.edu. On the home page is a map of the Northeastern U.S. marked with the locations of hundreds of weather stations where historical and ‘up to the hour’ weather data can be viewed. Although is provided free on the internet, it is funded through the New York State IPM program. Click on a weather station near enough to you (denoted by a leaf/rain drop icon) to get weather, insect pest, and disease information you need to make important management decisions that could save you time and money. Clicking on ‘grapes’ under ‘crop pages’ will give you access to forecasting models for all the major diseases, as well as the grape berry moth degree day model that will improve your timing of grape berry moth insecticide sprays later this summer. Each model forecast is accompanied by helpful disease management messages and explanations.

Next, let’s move our minds into the upcoming pre-bloom disease management season. It’s important to recognize that the threat of disease this spring (pre-bloom) is largely determined by the amount of overwintering inoculum in your blocks. The amount of overwintering inoculum is dependent on the amount of disease that developed in your vineyard last year or in previous years. In other words, if you have kept diseases well under control in the past, especially last year, then there will be relatively little for pathogen populations to build on and cause damage, at least initially, this year. Some very practical research by Wayne Wilcox at Cornell nicely illustrates this point with powdery mildew (pm) development in susceptible wine varieties. In blocks where pm was well controlled all season, fewer overwintering structures of the fungal pathogen (chasmothecia) were available the following spring to jump start disease cycles. Early disease pressure was relatively low and early sprays were less critical to good commercial control than in blocks where disease control was poor the previous year. Where there was poor control the previous year, more of the pathogen overwintered to start disease cycles the following spring and early sprays were critical to maintaining successful commercial control. This is not to say that a bad year of pm will automatically be followed by another bad year. But it certainly tilts the odds in favor of the pathogen, especially if for some reason, you can’t manage the timely application of your early disease control program (stuff happens). It also doesn’t mean you can slack off this year if you had good control last year. Remember, there’s the weather. The weather ALWAYS plays an important role too. A good illustration of this is an experience by an organic grape grower who, in an extremely wet season, developed a serious, economically damaging case of black rot. In conventionally managed vineyards there are several very effective chemistries to control black rot, but in organic production there are no real effective fungicides, and control of this disease in organic vineyards must rely heavily on cultural measures that reduce the pathogen’s overwintering population. Of course, the grower did everything he could to sanitize the trellis of overwintering fruit mummies and bury mummies that had fallen to the ground to reduce overwintering inoculum. But fortunately, the following year was bone dry during the fruit susceptibility period and black rot was not even an issue. Had the previous wet season been followed by another wet one, I’m quite certain, the battle for control of black rot in that organic vineyard would have required ‘the kitchen sink’ to avoid losses. Unfortunately, we have no control over the weather and accurate forecasts, especially long term, are not something to rely on. But, we can (and should) strive to control overwintering inoculum levels every year and the best way to do that is good, practical, season-long disease control.

So, begin to wrap your minds around the campaign ahead. If you had poor disease control in some blocks last season, have you reviewed your spray records where control failed AND where it worked well? Where it failed, did you use the wrong material at a critical time?  I’ve had growers discuss their control failures with me only to discover that their timing was fine, but their choice of material did not cover the disease(s) they intended to control. The number of spray materials, what disease each one controls, and how well each one controls each disease, can be bewildering at times…and the list keeps growing and changing. Also, materials that used to be good choices may have become ineffective due to the development of resistance by the pathogens. For example, materials like the strobilurins (Abound, Sovran, Flint, Pristine) are no longer effective at controlling powdery and downy mildew in many parts of the east. In vineyards where this has occurred, using them during the critical fruit protection period (which used to be a great idea!) can now prove disastrous. The sterol inhibitor fungicides (Rally, Elite, Orius, Mettle, Tebusol, Tebustar, Procure, Viticure, etc) are also exhibiting the effects of resistance by the powdery mildew fungus. Though in most cases they still work on powdery to some extent, they are not appropriate for the critical fruit protection period anymore, around and shortly after bloom (products that include the more active difenoconazole are an exception on less susceptible varieties). However, they may be acceptable for maintaining a clean vineyard outside the critical period. Do you have an accurate grasp on that?

Do you have a firm grasp on the critical fruit protection period? The critical period for fruit protection from all diseases generally extends from ‘just before bloom’ to about 4 weeks later. This is the period when you need to be especially vigilant about minimizing spray intervals, using your best materials that cover all the major diseases (Phomopsis, black rot, powdery and downy mildew), focus on good coverage, etc. It is never profitable to try to cut corners during the critical period. However, if you had heavy amounts of black rot in your vineyard the year before, you should assume you have an unhealthy dose of overwintering inoculum in your vineyard this spring, and prevention of leaf lesions in the fruit zone (which would need to be addressed during the first 3-12” of shoot growth, well before the fruit protection period) would also prove to be critical. This goes for other diseases as well (refer back to the previous example with Wayne Wilcox’ powdery mildew experiment). The pre-bloom presence of visible disease in the fruit zone is a big red flag; it means you’ve got potential for serious fruit loss ahead, especially if weather conditions favor the pathogen (wet, warm, humid, calm, cloudy) during the fruit protection period that follows.

Did you record the relative levels of disease that developed in years past for each of your blocks? In order to do this, you need to be able to identify the various diseases and then scout regularly for them. This takes up valuable time but you can streamline your scouting efforts in many ways. Do you know when you would expect to first see each disease? Downy mildew doesn’t become active until about the 5-6 leaf stage. So, you know you can’t expect to see it until about that time or shortly after that. In which blocks are diseases most likely to occur first? Your block or rows next to the woods would be a good place to start, or perhaps your most susceptible variety. Blocks with the most disease last year would be a good place to start. On which parts of the vine do you expect to see diseases appear first? Can recent weather data help you to determine where to look for the disease? For example, if a black rot infection period occurred 2 weeks ago (and you can find this out easily by searching the NEWA website), would you examine the newest growth, the oldest growth, or would you look for lesions on leaves that were currently expanding and most susceptible 2 weeks ago? The answers to these questions can help you streamline your scouting efforts, save time, and improve your expertise.

Do you fully comprehend the susceptibilities of all the varieties you’re growing? You cannot spray premium Vitis vinifera like the hybrids or natives and expect the same results. What are you going to change this year to address disease control breaches in your vinifera? If you had good control last year, are you ready to do it again this year? OR, do you feel lucky and plan to back off until close to bloom to apply your first spray? I always plan for the worst when it comes to the weather and assume it’s going to be wet, cloudy, and warm; ideal for fungal disease epidemics. Consider that here in the east we are growing a highly vulnerable, susceptible host (wine grapes) on the pathogen’s ‘turf’ (the wet, humid eastern U.S.). The good news is that disease control during the pre-bloom period is generally easier (good spray coverage not a problem, low initial disease/inoculum levels, etc.) and cheaper (can use lower fungicide rates, lower spray gallonage, less expensive materials, less time, etc) than in the post bloom period, and a well prepared pre-bloom disease management program will provide extra insurance against problems during bloom and early fruit set, when your fruit ($) is most vulnerable. Now let’s review the common diseases with some of these questions and concepts in mind.

Phomopsis cane and leaf spot is often the first disease problem we face in the pre-bloom period, particularly where trellis systems maintain lots of old and/or dead wood. That’s because old and/or dead wood is where the pathogen overwinters. Therefore, the more old wood you have in your trellis, the more inoculum you can expect to be battling with this spring. Conversely, cane pruned systems have fewer problems with Phomopsis, and cane pruning/minimizing older wood is an important cultural control for this disease. Fortunately, many areas of PA and other parts of the east experienced a relatively dry spring in 2016, helping to minimize new overwintering infections on year-old wood. But, older cordons and especially dead wood and pruning stubs, can carry overwintering inoculum into many subsequent springs. So, if there was little opportunity for new Phomopsis infections to occur last year, you can still be carrying a fair amount of overwintering inoculum in old cordons and pruning stubs.

During early spring rains, Phomopsis spores flush from lesions on wood and are splashed about to invade any new shoot, leaf, and inflorescence they land on…provided the wetting period/temperature combination falls within a minimum range for infection. The basal-most (oldest) internodes of new shoots are the most susceptible to shoot infections simply because they are closest to the inoculum source; wood. In every trial where I have rated shoot infection of Phomopsis, the most severe lesion development was ALWAYS found (on average) on the first (oldest) internode region of the shoot. Lesion development typically got less severe as my rating progressed through internodes 2, 3, 4, and 5. However, once these internodes become fully expanded after the first few weeks in the season, they are no longer susceptible to lesion development. I rarely see Phomopsis lesion development beyond the fifth internode region. That’s why this disease is best dealt with preventatively, very early, during the first few inches of shoot growth. Infections that occur on the first few internodes of new shoots are not only the most likely to occur, but also the most critical; infections of inflorescences (generally on nodes 2-5) can lead to crop loss early (parts of the inflorescence may be ‘bitten off’ by the pathogen) or later during ripening (cluster stem infections in spring move into berries and cause fruit rot and shelling after veraison). And, infections that occur on the basal-most internodes, can’t all be eliminated by judicious hand pruning during the dormant season. So, in blocks where you suspect any risk of early Phomopsis infections, applications of a fungicide (mancozeb or captan are good choices) at no later than 3-6” of shoot growth are a good investment, particularly if you are not cane pruning. Following up with fungicides at 8-12” shoots and immediate pre-bloom are also important pre-bloom applications. Below are some pics from last year’s blog (Figures 1, 2) to help you get a handle on the appearance of lesions on year-old canes. Unfortunately, determining the presence of Phomopsis on older wood generally involves more than just a visual assessment.

Figure 1. Dark brown lesions on the first few internodes on these Chancellor canes are from Phomopsis infections that occurred during early shoot growth in the previous year (when these were green shoots). The buds present are just ready to burst open with new shoot growth that will be very vulnerable to infection during subsequent rain periods.

Figure 2. Although the 1” shoot stage can be vulnerable to damage from this pathogen, the more critical stage is at 3-6” shoots, when more shoot, leaf, and cluster tissue is exposed and is highly susceptible (below). Note the inflorescence in the upper right picture from which Phomopsis has “bitten off” whole branches, dramatically limiting yield potential for that cluster.

Pre-bloom fungicide applications for Powdery mildew are also prudent during early shoot growth for Vitis vinifera cultivars and highly susceptible hybrids, especially in vineyards where control of this disease may have slipped last year (again, because of lots of overwintering inoculum). The primary inoculum for this pathogen generally comes from overwintering structures of the fungus that are lodged within cracks in the bark of cordons and trunks. Spring rain periods of at least 0.1” of precipitation and temperatures of 50 F or more, are the requirements for release of primary inoculum (ascospores) from the overwintering structures. The more mildew that was allowed to develop the year before, the larger the release of spores in early spring, the more primary infections that are likely to occur, and the more critical the need to control the disease early. Sulfur, oils, monopotassium phosphate, and potassium bicarbonate materials can be good choices for mildew management early on. All of these materials can eradicate small existing powdery mildew infections on leaves and cluster stems. Most do not generally offer any protection from future infections and therefore work best if applied often. Sulfur is an exception, and has the added benefit of providing a week or more of protection against future infections. Many of the more experienced growers like to utilize a mancozeb/sulfur combination to control all diseases during the pre-bloom period. This combination is relatively inexpensive, there are no resistance issues, and it works. Remember to read labels and be aware that you can’t mix sulfur and oils, or oils and captan. The tebuconazole products can be used during early pre-bloom to control powdery mildew as well, especially at the 8-10” shoot stage. These materials are very inexpensive and generally provide enough powdery mildew control to keep vines healthy until the immediate pre-bloom spray (they will also nicely control early black rot infections). At immediate pre-bloom and first post bloom, you want to apply your best powdery mildew chemistries like quinoxyfen (Quintec), difenoconazole (Revus Top), metrafenone (Vivando), fluopyram/tebuconazol (Luna Experience), etc. For native juice grapes, powdery mildew is rarely a concern during the early shoot growth stages, especially in the cooler Lake Erie region of Pennsylvania.

A note about fungicide resistance management and powdery mildew: It’s important to plan your powdery mildew management choices ahead of time with resistance management in mind. The easiest way to do this is to become familiar with FRAC (fungicide resistance action committee) codes listed prominently on the first page of fungicide labels. Fungicides with the same FRAC group number can be considered similar enough in their mode of action/chemistry that resistance to one is resistance to all others within that group. Therefore when you rotate fungicides for resistance management, you’re essentially rotating FRAC groups. Some good rules to remember are to avoid using the same FRAC group consecutively, or more than twice in a given season. The development of powdery mildew resistance is always a concern when using materials like the strobilurins (FRAC 11), the sterol inhibitors (FRAC 3), Quintec (FRAC 13), Vivando (FRAC U8), Luna Experience (FRAC 7, 3), Torino (FRAC U6), and Endura (FRAC 7) to name a few. Resistance is generally not a concern for uses of sulfur, oils, bicarbonates, and the potassium salts (mentioned above), or copper.

Next, black rot: One of the best ways to reduce overwintering inoculum of black rot is to scout your vineyard for old fruit mummies and eliminate them from the trellis. Black rot infected fruit mummies that have overwintered in the trellis are the most potent source of inoculum for infections the following spring. No matter how cold it gets over the winter, the pathogen survives just beautifully in colonized fruit remaining in the trellis. But, dropping this inoculum source to the soil, allows microbial degradation/weathering to reduce the potential for mummies to release spores the following spring. It also places the inoculum source much farther from new, susceptible plant tissue up in the trellis. The best time to ‘sanitize’ the trellis is during dormant pruning; weathering has already accomplished some of the removal of last season’s infected fruit from the trellis, and what remains is relatively easy to see and remove by hand. Experiments we conducted several years ago clearly showed that the earlier the mummies are knocked to the ground during the dormant period, the more time for decomposition to break them down before the next season, and the fewer spores released from the ground the following spring to start new disease cycles. Nevertheless, some inoculum on the ground will survive to release spores in spring, and burial of mummies with cultivation will go a step further to eliminate the threat. Removal of ALL old cluster material from the trellis before bud break is important to maintaining good control of this disease.

It may not be necessary to apply a fungicide for black rot at early shoot stages IF good control of this disease was achieved the previous year AND conscientious scouting and trellis sanitation has been implemented. However, the importance of early shoot infections should not be underestimated as I mentioned above, especially if they result in leaf lesions in the fruit zone. For example, inoculations we performed from early May to early June (simulating wet weather and an overwintering inoculum source (mummies) in the trellis) resulted in leaf and shoot lesions in the cluster zone (Figure 3). Those lesions went on to release spores during the critical fruit protection period, resulting in crop loss of 47-77% on those shoots with infected leaves!

An application of mancozeb, ziram, or captan for Phomopsis will also provide control of early black rot infections. The sterol inhibitor fungicides and strobilurins are also good materials for black rot that are more rainfast than mancozeb, ziram, and captan. The sterol inhibitors also provide excellent post infection activity that can be very useful at terminating an infection that has already occurred (but not yet manifested itself).

Figure 3. Early (pre-bloom) black rot leaf infections in the cluster zone provide inoculum that can add to problems with controlling fruit infection after capfall. The two small tan lesions on the leaf at node 2 are just inches from the developing inflorescence found at node 3 (picture on the right). These lesions will release spores during rainfall periods that could easily be splashed to highly susceptible cluster stems pre-bloom, and developing fruit after capfall. Resulting fruit infections will lead to crop loss.

Downy mildew and the 5-6 leaf stage: This stage marks the point at which the downy mildew pathogen first becomes active and is capable of releasing primary spores from inoculum sources that have overwintered on the ground (leaves and other plant material that was infected during the previous season). As with all other diseases, vineyards that developed a fair amount of downy mildew leaf/cluster infection last year will be at higher risk this spring than vineyards that were kept clean. However, overwintering structures of the downy mildew pathogen can survive more than one season in the soil.

Periods of rainfall with temperatures of at least 52 F meet the requirements of spore release and the first infections; plant surfaces must be wet for infection to occur. While scouting for this disease, expect to see it first in wetter areas of your acreage and pay close attention to leaves near the ground (sucker growth, grape seedlings that germinated from shelled berries last fall) which are most likely to become infected first. Therefore, keeping such low growth to a minimum in spring is a prudent control measure that can delay the development of the disease. It also suggests that if you’re planning vine trunk renewal from sucker growth, you will need to apply fungicides to protect that growth from the ground up as the pathogen becomes active.

Spring leaf infections are identified by the yellow ‘oil-spots’ seen on the tops of leaves (Figure 4), coinciding with white, downy sporulation of the pathogen on the undersides of leaves. Inflorescences can be blighted and show sporulation as well. Sporulation occurs during darkness under high relative humidity, and can typically be seen during a morning scout of the vineyard following a wet/humid night. Under optimum temperatures (70-75F), only an hour or two of plant surface wetness may be required for infection to occur, and new infections can produce their own spores with just 5 days.

Many parts of the northeast experienced drought conditions last year, which severely inhibited the development of this disease. Up in Erie County PA, the disease basically took a vacation in 2016, and I could barely find a handful of lesions on unsprayed ‘Chancellor’ leaves and fruit near the ground all summer: it was the perfect year to start renewal trunks! It wasn’t until later in August that rains finally returned and we began to see a few more infections, but for the most part the disease literally could not get off the ground in Erie county PA in 2016. What does this mean for 2017? The great lack of downy mildew in drought hit areas last year means that pre-bloom disease cycles this year will have to rely on overwintering inoculum from previous years (although spores of downy mildew can travel long distances between vineyards, the first infections will arise from inoculum within your vineyard). I have not found any detailed information as to how long the pathogen can survive in the soil, but I guarantee that if you’ve had downy mildew before, then it’s still there. Whether your area was wet or dry last spring, the principle described earlier still applies: vineyards devoid of downy mildew last year (whether from drought or just plain good control) will be easier to keep ‘clean’ in the pre-bloom period this year.

Mancozeb products are good options for the first downy mildew, Phomopsis, and black rot sprays in the pre-bloom period. Ziram and Captan have a similar spectrum of control, but Ziram is a little weaker on downy mildew, and Captan a little weak on black rot.  However, these may be a viable option if these diseases are not a huge threat early on (that is if you had good control last year). These materials are all surface protectants subject to wash-off by rainfall, which means that under heavy, frequent rainfall conditions, application intervals will need to be minimized (7-10 days?) especially for highly susceptible varieties. For that more critical ‘immediate pre-bloom’ spray (and the first post bloom spray), there are other materials like Presidio, Revus, Revus Top, and Zampro that are quite rainfast, very effective, and will provide longer range protection under wet conditions (when you need the protection most and are least likely to be able to stick to shorter spray intervals). However, products like Presidio also require a second active ingredient (like mancozeb) in a tank mix for resistance management purposes (which isn’t a bad idea at this critical spray timing in any case). Other materials like the phosphonates, Ranman, and the strobies /Reason, are probably best utilized outside the critical two sprays around bloom (especially for V. vinifera and highly susceptible hybrids), unless they’re used as tank mix partners with other effective materials. They’re very good materials, but they’re just not the ‘best of the best’.

Figure 4. Yellow oil-spot symptoms of downy mildew on young spring leaves.

One more time for emphasis: the immediate pre bloom and first post bloom (7-14 days later) fungicide applications are the most important you’ll make all year, regardless of variety grown and disease pressure. These two sprays protect your fruit from all the major fungal diseases (Phomopsis, black rot, downy and powdery mildew). Make sure sprayers are properly calibrated and adjusted for best coverage on a bloom-period canopy, spray every row at full rates and shortest intervals, and NEVER extend the interval between these sprays beyond 14 days.

‘Newer’ Fungicides: Aprovia (solatenol) may be worth a try for powdery mildew control (received federal registration in 2015). The active ingredient is related (same FRAC group) to Boscalid (found in Endura and Pristine) and Fluopyram (found in Luna Experience). It also has activity against black rot, but should not be expected to control this disease under high pressure on a susceptible variety.

***Lastly, to help you with all your grape management decisions this year, you should have…

New York and Pennsylvania Pest Management Guidelines for Grapes. An inexpensive, excellent source of research based information for commercial growers; some information in this blog was gleaned from it and it is revised every year to include the newest information. Copies can be purchased at the Cornell Store at https://store.cornell.edu/c-875-pmep-guidelines.aspx. It sells for about $31.

 

Looking back at the 2016 season

By Michela Centinari, Bryan Hed, and Kathy Kelley

The 2016 growing season was a rewarding one for many Pennsylvania (PA) wine grape growers. But before we move on with plans for next year, let’s review this past season using some interesting data we gathered from PA grape growers. In November 2016, we sent out a 5-min Internet survey developed by our team and housed on SurveyMonkey.com. A link to the survey was sent to 90 members of a PA wine grape grower extension electronic mailing list. Thirty-seven participants clicked the link and responded to questions related to the 2016 harvest and growing season.

All procedures were approved by the Office of Research Protections at The Pennsylvania State University (University Park, PA). Upon completion of the survey, each participant was entered into a raffle to win one of three $25 gift certificates that could be redeemed toward any Penn State Extension wine or grape program fee.

This article is based on our observations and feedback we received from survey participants. We welcome more PA wine grape growers to share their stories and to send us (Michela Centinari; Bryan Hed) their contact information so they can be included in future surveys (where else do you have a chance to win a gift card for a Penn State Extension event?).

First, some information about the respondents

Thirty-three survey participants (89%) indicated the region where they grew grapes. The majority of the respondents (11) were from the Southeast region, followed by Northwest (7), Northeast (6), South Central (4), North Central (3), and Southwest (2) regions.

Data that described what species of grapes survey participants grew were: Vitis vinifera (e.g., Riesling, Cabernet Franc, Chardonnay), Vitis interspecific hybrid (e.g., Chambourcin, Traminette, Vidal Blanc), abbreviated in Table 1 as vinifera and hybrid, respectively, and native (e.g., Concord, Niagara) cultivars (Table 1).

screenshot-2016-12-14-15-41-22

What did we ask the survey participants?

Participants were asked to rank the average yield of the grapes they grew in 2016 from “poor” to “record crop.” They were also asked to rank the average quality of the fruit from “poor” to “excellent,” and the insect and disease pressure experienced from “below average” to “above average.”  Respondents were then directed to open-ended questions where they indicated what cultivars performed below or above average and why.

 Survey participant responses  

  • Yield: The majority of the respondents (88%) indicated that average crop yield was “average” “above average,” or “record crop” (Figure 1). Only four participants (12%) indicated that average yield was “below average” or “poor.”screenshot-2016-12-14-15-41-31

Of those four respondents, two attributed “poor” or “below average” yield to disease issues (e.g., powdery mildew, black rot). One survey participant from the Southeast region indicated problems with freeze injury as the vines were approaching bud burst.  Specifically, the participant wrote: “My whites especially Chardonnay were light (lower crop yield than average) this year. I believe the whites were hit hard with the early April freezes when we had three nights in a row dip down into the 20’s. I believe many of the primary buds froze. Most of the white grape clusters were much smaller than usual.”

An unusually warm March was indeed followed by a very cold start to the month of April. Between April 3 and 10, there were several nights in the 20’s ºF in many regions of PA. While there was no sign of bud burst, as far as we are aware, for grapevines grown in central or north PA, some were approaching bud burst in several areas of south central and southeast PA.

The fourth respondent from northwest PA commented that “Vines are still recovering from 2014 winter injury, and that is too expensive to replant large percentage.” Despite long-term issues with winter injury recovery, finally, after two harsh winters (2013-2014; 2014-2015) PA grape growers were able to enjoy the winter without having to worry about their vines. In many regions of PA, winter temperatures did not reach critical low values that tend to injure many of the cultivars grown in the Commonwealth. However, on February 14 temperatures reached -10°F and below in northeast PA.  The lowest temperature recorded (-19°F) was in Potter County. Despite this isolated event, we did not receive inquires of growers concerned about winter injury.

  • Fruit quality: The majority of the respondents (83%) ranked fruit quality as “above average” or “excellent,” which was consistent across cultivars and regions. Only one grower rated fruit quality as “below average” as a consequence of high disease pressure.

screenshot-2016-12-14-15-42-04

A few survey participants from southeast PA who rated fruit quality from “above average” to “excellent” commented:

“Early veraison and high heat degree days in September allowed the early varietal to ripen in almost perfect condition. The Bordeaux reds .. in late September and early October soaked up a lot of rain and didn’t recover completely from this. I harvested Merlot clusters bigger than I have ever seen them”

“Bordeaux varieties (Cabs, Merlot, Petit Verdot) were at least 23ºBrix with a high of 25. Nice and ripe with good flavors”

“Grüner, Riesling, Merlot, Chambourcin, and Cabernet Franc achieved mature ripe flavor. Acids were in ideal range”

Other survey participants from across the state also indicated that in 2016 the grapes reached “Optimal ripeness and acidity level,” “Good acid balance,” “Berry size, color, acids, pH, and sugars were the best ever,” “Excellent cultivar character.”

Several respondents pointed out that “Hot and dry weather played an important role in the quality this year” and commented that fruit was clean from major diseases.

  • Insect and disease pressure: Almost half of the growers who participated in the survey (47%) experienced “below average” insect and disease pressure during the 2016 growing season, while 41% answered “average” and only 12 % “above average.”

screenshot-2016-12-14-15-42-34

Of the four participants who reported “above average” disease pressure, one indicated problems with spotted Lanternfly an invasive insect who unfortunately is making its way to some areas of PA (Spotted Lanternfly: A new invasive pest detected in Pennsylvania).  Two respondents reported issues with powdery mildew. Powdery mildew was indeed very much “alive and well” in many vineyards in 2016.  In Erie County, we witnessed flare-ups of this disease on fruit during late June and early July, despite relatively prudent control measures and relatively few primary infection periods. This disease requires rainfall events early in the season for spore release only (minimum of 0.1 inches of rain and temperatures above 50ºF), but once spores are released the pathogen does not require wet plant surfaces to infect susceptible tissue and generate subsequent waves of its parasitic life cycle. This is very much unlike most of the other fungal pathogens we deal with each year. Note that even California growers spend a boatload of time and treasure controlling this disease every year. In short, it is a disease management issue wherever grapes are grown, every year, everywhere. Fortunately, aside from a few horror stories where there were gaps in spray intervals around bloom, most growers managed to get decent commercial control of this disease on their grapes in 2016.

Weather conditions during the growing season

A look at the weather conditions through the online network for environment and weather applications (http://newa.cornell.edu/) can help interpreting survey participant responses. In Figure 4 and 5, we reported data collected by the two new weather stations located nearby the Penn State Fruit Research and Extension center (FREC) in Biglerville (Adams County, south central PA) and at the Lake Erie Regional Grape Research and Extension center (LERGREC) in North East (Erie county, northwestern PA). We compared the 2016 monthly growing degree days (GDD) (index of heat accumulation) and precipitation to the mean values for April through October for a three-year period (2013-2015) (Figures 4, 5).

Temperature: Despite a cool start to the 2016 season (see April and May) the rest of the season was warmer than average in PA and other parts of the eastern U.S. Indeed, the heat accumulated (GDD) from June through October in 2016 was above that of the previous three-year average (Figure 4).

screenshot-2016-12-14-15-43-12

The warm weather led in many cases to great fruit ripening conditions, as indicated by the majority of the respondents, but in a few instances may have hindered fruit sugar accumulation as noticed by one of the participants: “I think that heat in August slowed ripening and resulted in lower Brix than other years but all fruit did achieve ripeness.” High temperatures might increase plant respiration rates to a greater degree than photosynthesis rates, which in other words means lower carbon gain /sugar accumulation for the vine and fruit. A detailed explanation of why this happens can be found in the September issue of Viticulture notes edited by Tony Wolf (Professor and Viticulture Extension Specialist at Virginia Tech).

Precipitation: Rainfall in the spring and early summer was well below average in Erie County (northwestern PA) with 2.1, 1.9, and 2.7 inches of rain in May, June, and July, respectively (Figure 5B). Dry weather often comes hand in hand with a higher number of sunny days and higher temperatures; two additional factors that stymie fungal pathogen growth.

screenshot-2016-12-14-15-43-44

Peak grape disease susceptibility generally occurs during June and early July in PA. Both June and July were drier than average in many parts of the state: see for example Biglerville (south central PA) with only 2.7 and 0.2 inches of rain in June and July, respectively (Figure 5A), or other sites across the state (Table 2: Lewisburg, State College, and Cabot). This helps to explain the large percentage of growers reporting average to below average disease pressure. However, in other parts of the state or near the eastern PA border it was not quite as dry but still warm (Table 2, numbers in bold font).

screenshot-2016-12-14-15-44-17

In places and months where rainfall amounts were well above average, rainfall was often heavy and punctuated by well defined, often lengthy dry periods in which growers could easily keep up with their protective fungicide sprays. Unfortunately, there were a few locations where diseases like black rot flared out of control, but those were the exceptions rather than the rule (Figure 3).

In summary “dry, sunny, and warm” sums up the weather for the majority of the growing season for many regions of the state, with local and ample variations on precipitation amount. For the most part, these conditions are rather hostile to the fungal or fungal-like pathogens that are responsible for the majority of our grape disease issues every year. This was very fortunate for a number of reasons, not the least of which was the fact that 2016 was following a year that left many vineyards with well above average levels of overwintering inoculum for diseases like black rot and downy mildew. This was especially true in northwestern PA; downy mildew could be found in pretty much every vineyard in Erie County in 2015, despite the fact that the vast majority of the grape acreage is planted to Concord, a variety with relatively low susceptibility to downy mildew. A wet spring and early summer could have left growers really struggling hard to keep those diseases under control on fruit this year. But downy mildew literally “took a vacation” in the Lake Erie region in 2016. It was the most downy mildew-free season Bryan experienced over his 18 seasons of working with grapes. You might say that many PA grape growers got a small taste of what it’s like to grow grapes in California.

When ripening begins, our attention naturally turns toward controlling bunch rots on susceptible varieties. Varieties that produce “tight,” compact clusters are most at risk, and for these control measures are essential. Fortunately, survey participants did not indicate bunch rot issues this season. In Erie, as well as many other locations in PA rainfall resumed by the second week in August (Figure 5), and the ripening period was actually relatively wet through September. As you know, rainfall during ripening leads to bunch rot problems (Late summer/early fall grape disease control) and we did see rot problems develop early in vineyards of Pinot Gris and Pinot Noir with extremely tight clusters despite measures to reduce cluster compactness and a barrage of fungicide applications. In those vineyards, the crop had to be harvested early, before optimum ripeness. However, at LERGREC, rot control was especially good in Vignoles (another cultivar susceptible to bunch rot) where we applied mechanized pre-bloom fruit zone leaf removal in combination with Botrytis specific fungicides at veraison and beyond.

In conclusion, it was a rewarding growing season for many PA wine grape growers. Warm, (mostly) dry conditions favored the production of a high-quality vintage and we are looking forward to tasting this season’s wines!

Resources for Identification and Management of Vineyard Pests

By: Andy Muza, Penn State Extension – Erie County

Another harvest will soon be over for grape growers in Pennsylvania and the winter season is fast approaching. Take the time this winter to explore the resources below to prepare for next season’s pest problems.

Hardcopy References
The following 5 references provide information on identification and management of insect, disease and weed problems in vineyards. I suggest purchasing these items before next season begins. Although the cost will be over $250 it is well worth having these invaluable resources in your viticultural library.

  1. New York and Pennsylvania Pest Management Guidelines for Grapes: Every commercial grape grower in Pennsylvania should have a copy of the current guidelines. This guideline provides a wealth of information on insect, disease and weed management with pesticide options, rates, and schedules, as well as, a chapter on sprayer technology.
  2. A Pocket Guide for Grape IPM Scouting of Grapes in North Central & Eastern U.S.:This pocket reference book is for use while scouting in the vineyard. The guide provides concise information and color photographs on insect/mite pests, natural enemies, diseases and disorders.
  3. Compendium of Grape Diseases, Disorders, and Pests, Second Edition: This new edition is an expanded version of the original Compendium with 375 photos and drawings and containing updated information about pathogens including additional diseases. The second edition is divided into 4 parts covering: diseases caused by biotic factors (e.g., fungi, bacteria, viruses etc.); disease – like symptoms caused by insects and mites; disorders caused by abiotic factors (e.g., environmental stresses, nutritional disorders, etc.); and fungicides/spray technology.
  4. Weeds of the Northeast: Described as the first comprehensive weed identification manual available for the Northeast enabling identification of almost 300 common and economically important weeds in the region. The manual contains color photos of vegetative and flowering stages of weeds, as well as, seed photos.
  5. Wine Grape Production Guide for Eastern North America: A comprehensive reference on all aspects of wine grape production (e.g., varieties, canopy management, nutrient management, etc.) including chapters on disease management, insect and mite pests and vineyard weed management.
Important viticulture resources for vineyard managers in the Mid-Atlantic region. Photo provided by: Andy Muza

Important viticulture resources for vineyard managers in the Mid-Atlantic region.

Insect and Disease Resources – 2016 articles

Articles from the 2016 season that should be reviewed include:

GRAPE DISEASE CONTROL, 2016 by Wayne F. Wilcox, Cornell University (74 pages). Dr. Wilcox provides comprehensive coverage of relative research and disease management options.

Grape Insect and Mite Pests – 2016 Field Season by Greg Loeb, Cornell University (21 pages). Dr. Loeb provides a thorough review of insect pests that you might see throughout the season in the vineyard. Included are 18 photos of pests/injury along with management guidelines.

Insect and Disease Resources – Web sites

IPM –Grapes (Cornell): Information is available on diseases, insect and mites, weeds, wildlife, organic IPM, spray technology and pesticides.

NYS IPM : Fruit IPM Fact Sheets (Cornell): Fact sheets on diseases and insects on grapes, tree fruit and small fruit. A total of 22 fact sheets pertain to insects and diseases on grapes.

Identifying Grape Insects (Michigan State University):  The information on this site is from the previously mentioned resource, A Pocket Guide for Grape IPM Scouting of Grapes in North Central & Eastern U.S. and is categorized by: Pests attacking; buds, leaves, fruit, root, during harvest. Also includes beneficial insects and mites.

Mid Atlantic Vineyards Grape IPM (Virginia Tech): Insect fact sheets categorized by: direct pests – fruit; indirect pests – leaves; trunk and cane feeders; and root feeders.

Ontario Grape IPM: This site provides information on a variety of topics including: insects and mites; diseases and disorders; weeds; herbicide injury; identification keys; etc.

Growing Grapes – Vineyard IPM (eXtension): Articles both in English and Spanish on: insects, diseases, weeds, animal pests and problems not caused by insects or diseases.

Weed Resources – Web sites
New Jersey Weed Gallery (Rutgers): Photos and descriptions of weeds found in New Jersey. Weeds can be viewed by common name, Latin name or thumbnail images.

Weed Identification Guide (Virginia Tech): These pages are intended to aide in the identification of common weeds and weed seedlings found throughout Virginia and the Southeastern U.S. The weed pictures are arranged alphabetically by common name.

UMass Extension Weed Herbarium (University of Massachusetts): Identification notes and color photos of over 500 weeds.

UC-IPM Weed Photo Gallery (University of California): Common names link to pages with weed descriptions and photos often showing several stages of development.

 

Notes on the 2016 growing season and drought conditions

By: Dr. Michela Centinari

It is August already, which, for many grape growers in Pennsylvania, means veraison and the beginning of fruit ripening. It seems a good time to comment on the seasonal weather and how it can affect the vines. In July, above average temperatures were recorded in Pennsylvania [1], and drought conditions varied from ‘none’ to ‘severe drought’ across the state (Figure 1). The regions most affected by drought are North Central, Northwest, and some areas of Northeast PA [1].

Aug 2016_Michela_Fig 1 Drought Map

Figure 1. Map of drought intensity for Pennsylvania released on August 4, 2016 (http://droughtmonitor.unl.edu).

In Figures 2 and 3 I reported the cumulative growing degree days (GDDs) (April to July) and precipitation (March to July) recorded at the two Penn State research and extension stations located in the South Central (Biglerville, Adams County) and Northwest (North East, Erie County) part of the state (http://newa.cornell.edu/). I also included the 2014 and 2015 data so you can compare the heat accumulation (GDDs), precipitation patterns and amount this year with those of the two previous seasons.

When looking at figures 1, 2, and 3, please keep in mind that local weather conditions vary greatly, shower and thunderstorm activity was hit or miss across the state. It is indeed recommended that growers install a weather station at their site to carefully monitor weather conditions and assist with disease control programs.

Aug 2016_Michela_Fig 2 GGDs 2014 2015 2016

Figure 2. Cumulative growing degree days (GDDs) recorded from April to July 2014, 2015 and 2016 at the two Penn State research and extension stations.

Compared to 2014 and 2015, this growing season started with lower heat accumulation in some areas of Pennsylvania, such as the Northwest (Figure 2A) and South Central (figure 2B) regions.  Higher than average temperatures recorded in July however, pushed GDDs close to or above those of the same period last year. For example, in Erie County, cumulative GDDs were, by the end of July, above those accumulated in 2015 or 2104.  In South Central PA GDDs are reaching the 2015 values and they are above those accumulated in 2014 for the same period (April-July).

The hot temperatures recorded in July can accelerate fruit ripening [2]. For example, in Central Pennsylvania, Noiret (Vitis hybrid), which is not one of our earliest varieties, started to turn color last week (i.e., the first week of August), approximately 10 days earlier than last year.

While drought conditions have not been recorded in the Southeast and most of the Southwest regions, it has been dryer than average in the rest of Pennsylvania. For example, in North East (Erie County, Northwest) cumulative precipitation from March to July (13.6²) was 40% and 36% lower as compared to last year (22.6²) and two years ago (21.12²). In Biglerville (Adams County, South Central) cumulative precipitation from March to July (12.7²) was 33% and 31% lower as compared to last year (19.2²) and two years ago (18.4²).

Figure 3. Cumulative precipitation recorded from MArch to July 2014, 2015 and 2016 at the two the two Penn State research and extension stations.

Figure 3. Cumulative precipitation recorded from MArch to July 2014, 2015 and 2016 at the two the two Penn State research and extension stations.

Drought doesn’t always equal water stress

In- and across-season precipitation patterns in the eastern US are unpredictable.  In our humid climate, precipitation and the soil water reservoir are usually sufficient to meet (or exceed) vine water requirements through ripening. Even if a drought period occurs, its duration and severity are not usually sufficient to warrant concern about moderate or severe vine water stress. Growers do however need to be aware that non-irrigated grapevines in temperate climates can occasionally face water stress during drought periods in the growing season [3; 4].

Hot temperatures, like those recorded in July, increase evapotranspiration and how much water the vine needs. This could facilitate the occurrence of vine water stress in areas that have been experiencing persistent lack of rain. The risk of water stress, indeed, not only depends on the amount of soil water available (supply), but also on how fast this water is used by the vines (demand) [5].

Along with seasonal rainfall and winter soil moisture other factors affecting the amount of water available (water supply) to the vines are:

  • Soil water holding capacity which is determined by the soil textural properties: heavier soils (loam and clays) hold more water than light sands or gravels. For example, a unit volume of sandy-loam soil can hold about 50% as much water as a clay soil [5].
  • Soil depth: deep soil can hold a greater volume of moisture than shallow soil [6] allowing grapevines, in the absence of restrictive layers, to develop a more extensive and deeper root system which can access deep resources of water during drought periods.
  • Grapevine root system size and rooting depth:  In addition to soil characteristics, also the age of the vine will influence root system size and rooting depth. Young vines have restricted root systems and rooting volume for several years, thus they are more sensitive to water stress than mature vines with well-established root systems [5].
  • Presence of competitive plants, as green and actively growing cover crops and weeds in the middle-row and in-row areas.

Water demand is primarily driven by weather conditions (solar radiation, air temperature and humidity). For example, evaporation from an open pan under hot and dry weather (i.e., California) can be around 8-10 inches of water per month, whereas under cool and humid condition, typical of the northeast US can be less than 5 inches [5]. Also the amount of sun-exposed transpiring leaf area and crop load will affect the amount of water used by the vines [5]. For example vines trained to GDC or high-wire cordon tend to have greater sun-exposed leaf area that can capture more sunlight and use more water than those trained to vertical shoot positioning (VSP) [5]. Heavily cropped vine vines also require more water for fruit ripening than vines with a smaller crop [2].

Vine response to water stress varies with the severity of the stress and the timing of the season it develops

Growth processes (i.e., shoot growth, early berry growth) are more sensitive to water deficit than photosynthesis [7]. Therefore, a mild/slight water stress between fruit-set and veraison can favorably diminish vegetative growth and reduce berry growth leading to smaller berries with potentially higher skin to pulp ratio without compromising photosynthesis and carbohydrates/sugars production [7]. Under moderate to severe water stress conditions, however, photosynthetic activity is reduced possibly leading, early in the season, to poor canopy development and function. Later in the season (after veraison) a reduction in photosynthesis can decrease sugar accumulation in the berries with a negative effect on fruit ripening and flavor development. Further, a reduced storage of carbohydrates and other nutrients in perennial organs may occur. Thus, it is crucial to maintain a healthy and functional canopy after veraison to avoid negative effects on fruit or wine quality and cold hardiness. Furthermore, because after veraison, berry growth is quite resistant to water stress, a post-veraison water deficit is not as effective in reducing berry size as a pre-veraison one [5].

Growing up in Italy, I remember the old-world “wine dilution theory” that supported the idea that any irrigation after veraison would lead to an increase in berry size (due to water dilution) and a reduction in wine quality [8]. There was not strong scientific evidence, however, supporting this assumption. It was actually found that water doesn’t move into the berry after veraison due to complete or partial lost in xylem functionality [7] which proved that irrigating the vines after veraison doesn’t actually impact berry size [8]. Thus, nowadays it is recommended to avoid moderate to severe water stress after veraison to ensure vine health and proper ripening and flavor development.

Symptoms of vine water stress:

Since vines change in appearance under water stress conditions it is a good practice to walk through the vineyard and look for sign of water stress, starting with young vines. A comprehensive table that summarized visual symptoms of increasing water stress from mild to severe can be found in the “Wine grape production guide for eastern North America” (page 172)  and also available in the July issue of Viticulture Notes [2] edited by Tony Wolf, professor of viticulture at Virginia Tech University.

Below I summarized some of the visual indicators of vine water status, from ‘well-watered’ to ‘severe drought’ conditions [6]

Well-watered vines (Figure 4):

  • Shoot tips are actively elongating
  • Tendrils are turgid and expand well beyond the shoot tip
  • Leaves orientation: leaf blades are oriented toward the sun
  • Leaf color and temperature: canopy is green and healthy and leaves are cooler than our body temperature
  • Berries are turgid

Aug 2016_Michela_Fig 4 Well Watered Vines

Mild to moderate water-stressed vines:

  • Shoot tips are compressed and they are enclosed when the last formed leaves are pushed toward the growing tip (Figure 5A)
  • Tendrils are drooping or wilted
  • Leaf orientation: leaves are oriented away from the sun
  • Leaf color and temperature: leaves (starting from the basal leaves) are grayish-green to light-green and they are warm to touch at mid-day (> 100°F)
  • If it occurs around bloom/ fruit-set, berry-set may be reduced

Severe water-stressed vines:

  • Shoot growth has stopped and shoot tips are dry or aborted
  • Tendrils dried or abscised
  • Leaf orientation: leaves may roll and dry
  • Leaf color and temperature: leaves (starting from the basal leaves) are yellow with necrotic edges (Figure 5B) and they are very warm (well above 100°F)
  • Cluster rachis tip may dry if stress occurs at bloom, fruit-set may be reduced, berries may become flaccid if water stress occurs post-veraison

Aug 2016_Michela_Fig 5 Water Stressed Vines

Water stress in a young planting must be avoided because it can compromise root system establishment and overall vine growth, delay its capability to carry a crop, and reduce cold hardiness. If you notice signs of water stress in young vines and you don’t have a permanent and functioning irrigation system in place, temporary irrigation systems could be used such as a flex tank and hose. It is a very labor intensive operation but it is crucial to ensure the long-term success of your investment. If you notice any sign of severe water stress on your mature vines and you are not able to irrigate them you may want to consider shoot and crop-thinning (especially in heavily cropped vines) to reduce vine demand for water, as well as avoid growth of weeds which can compete with vines for water supply [9].

Literature cited

  1. United States Drought Monitor: http://droughtmonitor.unl.edu
  2. Wolf TK. Viticulture Notes. Vol 31 No. 5. 23 July 2016. Virginia Tech University Cooperative Extension. Available at: http://www.arec.vaes.vt.edu/alson-h-smith/grapes/viticulture/extension/growers/current_VN_newsletter.pdf.
  3. Hayhoe K, Wake CP, Huntington TG, Luo L, Schwartz MD, Sheffield J, Wood E, Anderson B, Bradbury J, DeGaetano A, Troy TJ and Wolfe D. 2007. Past and future changes in climate and hydrological indicators in the US Northeast. Climate Dynamics 28, 381–407.
  4. Schultz HR and Stoll M. 2010. Some critical issues in environmental physiology of grapevines: future challenges and current limitations. Aust. J. Grape Wine Res. 16, 4–24.
  5. Lakso AN. 2000. Basics of Water Balance in New York Vineyards. 29th NY Wine Industry Workshop, NYS Agric. Exper. Sta., p 94–101.
  6. Wolf TK. 2008. Wine grape production guide for Eastern North America. Natural Resource, Agriculture, and Engineering Service: Ithaca, NY USA.
  7. Keller M. 2010. The Science of Grapevines: Anatomy and Physiology. Publisher: Academic Press.
  8. Hansen M. 2016. Rethinking post-veraison irrigation. Vineyard & Winery Management. July-August, 2016. 60–
  9. Hoheisel G, Moyer M. Grapevine management under drought conditions. Washington State University Extension. EM4831E. Available at : http://cru.cahe.wsu.edu/CEPublications/em4831e/em4831e.pdf

2016 Post Bloom Disease Management Review

By: Bryan Hed

Once again, we’ve arrived at that part of the season just beyond the immediate pre bloom and first post bloom spray. For many years now, research has shown that those two sprays are absolutely essential to a fruit disease management program, at least for control of the four major grape diseases (powdery and downy mildew, black rot, and Phomopsis). We have always emphasized the use of ‘best’ materials, shortened intervals, best coverage, etc., for those two sprays, EVERY YEAR!…a no brainer. No matter what varieties you grow, those two sprays are most often the most important for protection of your crop.

Fortunately for some of these diseases, fruit susceptibility is short lived and most control of fruit diseases like powdery mildew is achieved by management right around/shortly after bloom. Indeed, work conducted by Wayne Wilcox and his grad students over the years has shown that fruit are generally susceptible to powdery and downy mildew for only about 2-3 weeks after capfall. Varieties of Vitis vinifera tend to be susceptible a little longer than native varieties like ‘Concord’, but for all varieties, the period of time during the first 2-3 weeks of fruit development is the most critical for fruit protection. Whenever I am approached with questions from growers as to why they ended up with a boatload of fruit disease in a given year, the answer almost invariably lies within the spray program during early fruit development.

Beyond that, things tend to get a little more complicated in terms of ‘what do I spray now?’ It depends on a number of things like the weather (past, present, and future), the variety grown/susceptibility of the host, your overwintering inoculum load (how much disease you had last year and the amount of old wood and debris in your trellis system this year) and your current disease levels. If you’re growing Concord grapes in the Lake Erie region in 2016, where rainfall during June has been scarce and sunshine and low humidity have dominated, diseases have been relatively easy to control so far. For example, there have been but four brief downy mildew (Figure 2) infection periods to date. As a result, this disease simply cannot be found in most maintained vineyards in the Lake Erie region, despite an abundance of downy mildew overwintering inoculum from the widespread occurrence of this disease last year. And, there have been just two mild black rot (Figure 1) infection periods since bud break. The immediate pre bloom and first post bloom spray probably provided all that was needed for control of powdery and downy fruit infections. The threat of black rot fruit infection remains (Concord is susceptible to this disease for about 4-6 weeks after capfall; V. vinifera about a week or two longer), though in vineyards that did not have black rot problems last year and where current disease is almost non-existent it is unlikely that black rot will spiral out of control at this point unless the current weather pattern suddenly turns very wet. Regular scouting of your vineyard will reveal whether or not this disease has gotten started in your vineyard (at this point in the season, it takes about 14 days for symptoms of black rot fruit infections to manifest themselves after an infection period).

Figure 1. Black rot fruit (left) and leaf (right) infections. Note the one mummified berry at the top of the cluster in the picture on the left. It was likely the source of spores for infections on several other berries of the same cluster just below it.

Figure 1. Black rot fruit (left) and leaf (right) infections. Note the one mummified berry at the top of the cluster in the picture on the left. It was likely the source of spores for infections on several other berries of the same cluster just below it. Photos By: Bryan Hed

 

 

Figure 2. Downy mildew on pea-sized Chancellor fruit (left) and mature Concord leaves (right).

Figure 2. Downy mildew on pea-sized Chancellor fruit (left) and mature Concord leaves (right).  Photos By: Bryan Hed

The threat of Phomopsis infections depends to a large degree on how much overwintering inoculum is available. Since current season Phomopsis infections (Figure 3) generally do not produce spores until the following seasons (unlike the other fungal diseases we deal with each year), the development of this disease is dependent on overwintering inoculum sources that are normally ‘milked out’ by seasonal rainfall from May through mid-July. That means that in an average rainfall year, there are few spores left to cause infections by mid-July, even though fruit of many varieties do not appear to lose their susceptibility to Phomopsis (research by Mike Ellis and his students at Ohio State University). If spore sources are not being depleted in regions that have experienced a dry spring this year (like the Lake Erie region), enough inoculum may still be available in overwintering sources to cause fruit infections (Figure 3) past the mid-July period, should conditions turn wet. As one would expect, this is more of a concern for vineyards with a previous history of this disease. In addition, vineyards trained to trellis systems that retain lots of older and/or dead wood (cordons as opposed to canes, machine pruning as opposed to hand pruning) and/or vineyards that have not been receiving early shoot (3-6” shoots) sprays in previous years, will be more at risk of retaining significant amounts of overwintering inoculum of Phomopsis past the mid-July period during years with dry springs.

Figure 3: Heavy early Phomopsis infections on shoots and leaves (left) of Concord grape. Fruit infection of Niagara grape (right) that manifests itself during the ripening period.

Figure 3: Heavy early Phomopsis infections on shoots and leaves (left) of Concord grape. Fruit infection of Niagara grape (right) that manifests itself during the ripening period. Photos By: Bryan Hed

For Lake Erie region juice grape growers, powdery mildew remains in spite of the dry weather. Recall that powdery mildew primary infection periods require rainfall of at least 0.1” (and temperatures above 50 F). However, once primary infections have occurred, the disease can proceed to build without rainfall from spores produced by those primary infections. I suspect the dry, sunny weather will keep disease development moving at a slower than average pace (direct sunlight kills powdery mildew), but the disease will continue to build as it always does. Juice grape vineyards with low to average size crops may require little beyond the first or second post bloom spray for mildew. But keep in mind that we’ve a long way to go and if cloudy, humid conditions become entrenched, it can speed epidemic development. Also, poor ripening conditions after veraison can greatly reduce a mildewed canopy’s ability to ripen a crop, especially a large crop.

For wine grape growers, wherever you are in PA, it’s a ‘given’ that protection against all the major diseases should continue well past the first post bloom spray, for fruit and for leaves. As mentioned earlier, fruit are still susceptible to black rot and Phomopsis, and if you’re in an area experiencing at least some rainfall this year, downy mildew is definitely a continuing threat. As detailed above, the threat of powdery mildew goes without saying and every day is a powdery mildew infection period. So, for the second post bloom spray on wine grapes, include active ingredients for control of all diseases.

For continuing summer sprays, pay close attention to chemical classes for resistance management and always rotate modes of action. The loss of a mode of action (like the QOIs (strobies)) is a big deal to wine grape growers who have to apply many sprays within a given season for control of diseases like powdery and downy mildew. Rotation and resistance management should be an important component of your summer spray program. You’ve applied your best materials around bloom, now it’s time to rotate to other modes of action. Fortunately, we have lots of effective options for powdery and downy mildew control; use as many of them as you can, never applying consecutive sprays of anything (except the old standards like copper, sulfur, mancozeb products, ziram, captan). In Pennsylvania, we have many effective modes of action for powdery mildew like those found in Vivando, Torino, Quintec, the difenoconazole products (the newest, most powerful sterol inhibitor), and Luna Experience, Endura, and now Aprovia (the succinate dehydrogenase inhibitors). And of course, there’s always sulfur, but beware its use on red hybrids. I should mention that Aprovia is also labeled for black rot control. However, our recent tests have indicated that Aprovia’s black rot efficacy may be limited and that further testing is needed to better define this activity before it can be recommended for control of this disease.

For downy mildew we have products like Revus, Presidio, Ranman, Zampro, the old standards (copper, mancozeb products, ziram, captan), and the phosphorous acid products. Unfortunately in parts of PA, the powdery and downy mildew pathogens have developed resistance to the strobilurins, and they may not be reliable choices any longer. Also, the active ingredient in the product known as Reason, has the same mode of action against downy mildew as the strobilurins, and for resistance management purposes, Reason should be considered the ‘same’ as the strobilurins. One last thing: if you use the phosphorous acid products for downy mildew control, keep in mind that although they are extremely rain-fast, do not expect them to provide more than 10 days of protection against this disease, especially under high disease pressure.

For wine grape growers in more southerly regions of PA that have been receiving regular or heavy rainfall, Protection against all diseases obviously needs to continue. Once past the fruit protection period (which may be up to 6-7 weeks past capfall for black rot on V. vinifera), leaves of V. vinifera and some of the more sensitive hybrids will need continued protection from powdery mildew up to veraison or longer. As long as conditions remain wet, downy mildew will also remain a threat deep into the season. A clean canopy is essential for maximum ripeness and fruit/wine quality, maximum winter hardiness (recalling the cruel winters of 2014 and 2015), and minimal overwintering inoculum. For late season powdery mildew control, alternative materials may gradually be used to replace the synthetics and sulfur (particularly for reds where late sulfur applications can create wine quality issues). Avoid oils around/after veraison for powdery mildew control to avoid reducing photosynthesis. I have heard good things about potassium salt use (potassium bicarbonates and nutrol) from colleagues in Ontario, to maintain clean canopies late into the season. There are other alternatives currently available for late powdery mildew control, but for many their efficacy, especially on V. vinifera, is modest at best.

Late Summer sprays are for leaf protection, especially for varieties of V. vinifera. Sprays at this time primarily target powdery mildew, but may also include downy mildew if disease has gotten a foothold in the vineyard and conditions remain wet into fall. Regular scouting and strict attention to weather conditions at this time are very beneficial to making prudent late season spray decisions. For downy mildew, rainfall and leaf wetness is critical for epidemic development and dry late summer periods can sometimes offer relief from this disease. However, beware of heavy over-night dews which can continue to fuel downy mildew infections and sporulation without rainfall and keep the ‘fire’ alive on leaves at a slow burn. Early defoliation by downy mildew will effectively terminate the fruit and cane ripening process and leave vines weakened going into winter.

For bunch rot control, wine grape growers of bunch rot susceptible varieties may have already applied a Botrytis specific fungicide at full bloom.  This is because Botrytis infections of the inflorescences can occur during bloom under wet conditions. These infections usually remain dormant and do not result in active rot…until after veraison, when injury to berries or high humidity, or some other factor (research has not completely determined all the factors involved) may lead to activation of a percentage of these infections and cause clusters to rot.

The next Botrytis fungicide application is commonly applied at just before closure of the clusters (soon). In varieties with very compact clusters, this application may be extremely important as it represents your last opportunity to get fungicides into the interior surfaces of clusters. This spray may also help to reduce latent infections that research has shown can continue to accumulate throughout the berry development period. It may also be an opportunity to ‘blow out’ bloom trash (dead cap and stamen tissue that got stuck in the clusters after bloom) from the insides of clusters. Bloom trash can provide substrate for fungi like Botrytis and serve as a focal point for bunch rots to develop later in the season, from inside clusters. The compactness of clusters plays an important role in not only the retention of bloom trash (the tighter the cluster, the more bloom trash retained), but also the effect of retained bloom trash on cluster rot; as compactness increases, the enhancement of bunch rot by retained bloom trash increases.

Another bunch rot control measure is leaf removal around clusters. Most often applied shortly after fruit set, fruit zone leaf removal exposes fruit to better air, sunlight and pesticide penetration which can improve control of ALL fungal diseases. This practice is most commonly applied to varieties of Vitis vinifera that produce tight clusters, but it is an expensive operation to add to your production costs and is most cost effectively applied by machine (machinery costs aside). It can be mechanized most effectively if vines are trained to a VSP or some other two dimensional trellis system with a relatively focused and narrow cluster zone (Figure 4A and B).

Figure 4A (top) and B (bottom). Canopy of VSP trained Riesling before (top) and after (bottom) mechanized leaf removal utilizing air-pulse technology. Note the dramatic increase in exposure of inflorescences after leaf removal, with little or no damage to inflorescences.

Figure 4A (top) and B (bottom). Canopy of VSP trained Riesling before (top) and after (bottom) mechanized leaf removal utilizing air-pulse technology. Note the dramatic increase in exposure of inflorescences after leaf removal, with little or no damage to inflorescences.  Photos By: Bryan Hed

Research generally indicates that the earlier this practice is applied, the larger the effects for bunch rot control. For example, when applied at trace bloom (first flowers opening), it tends to reduce fruit set in addition to exposing clusters. This can be beneficial for varieties that naturally produce compact clusters (Pinot Noir, Pinot Gris, Chardonnay, Vignoles, Riesling) that are very susceptible to rot during ripening (Figure 5). Clusters that are looser (as a result of reduced fruit set) are easier to penetrate with pesticides, and are less apt to become damaged by overcrowding of berries before harvest. However, the potential for yield reduction may make the trace bloom timing unnecessary or undesirable on varieties that do not suffer from compactness/high susceptibility to late season rots. One note of caution: in more southerly climates, some growers remove leaves only on the east (north-south running rows) or north (on east-west rows) side of the trellis to avoid sun damage to fruit in late summer.

Fruit zone leaf removal can also reduce bloom trash retained in clusters: when comparing clusters of vines treated with and without leaf removal, we noted a significant reduction in bloom trash where leaves were removed, regardless of timing or method (by hand or machine). This can be particularly effective if utilizing air-pulse technology to remove leaves. This type of leaf removal mechanization applies high speed pulses of air to shatter leaves in the cluster zone, while blowing bloom trash from clusters.

The next fungicide application for Botrytis is made just before or at veraison. As fruit begin to soften and skins become thinner and more ‘breachable’ by fungal pathogens like Botrytis, an application at this time, to rot prone varieties, is a good way to stave off bunch rot development as fruit become more susceptible and more likely to become injured by birds, insects, excess moisture/humidity, and overcrowding of berries in tight clusters. Botrytis fungicides can protect intact fruit surfaces and may help to reduce the spread of Botrytis rot on fruit, even after they have become injured. Lastly, an application about 2-3 weeks after veraison, especially under wet weather conditions, can reduce further rot development during the last stretch of ripening. Keep in mind that Botrytis fungicides control Botrytis, and will not provide protection against sour rot organisms that often destroy fruit of overly compact clusters, despite the application of a full Botrytis fungicide program.

Figure 5. Botrytis bunch rot developing very aggressively on compact Vignoles grape clusters.

Figure 5. Botrytis bunch rot developing very aggressively on compact Vignoles grape clusters. Photo By: Bryan Hed

Don’t forget that there is abundant information available in the 2016 New York and Pennsylvania Pest Management Guidelines for Grapes. This is one of the very best guides for grape growers in NY and PA (and the Northeastern U.S. in general). It represents the compilation of many years of excellent grape research and includes the most recent updates on pesticide use and disease and insect pest control. If you don’t have a copy, get one through Cornell University press. Every commercial grape production operation should have one! At about half the cost of a single pesticide spray, it is well worth it.

Grape Pests Updates – Spring 2016

By: Jody Timer

As a new grape season approaches, you all may be asking yourselves, “What is going to be my biggest headache this season?” As far as insects go, I would have to answer, as always, the grape berry moth (GBM).  In this blog I would like to touch on the most recent research regarding the grape berry moth, as well as, other insects to scout for in your vineyards in the early part of the growing season.

The last two growing seasons, growers expected to see a dramatic decline in GBM populations, due to the harsh winters and record breaking cold. The opposite scenario occurred when greater than average GBM infestations materialized.  So, what can we expect from this growing season?  The winter of 2015-2016 was mild, the spring started off warm, and then April slowed down the accumulation of degree days. The total accumulation of degree days for this season is only slightly ahead last season’s and is forecasted to catch up in the next week to within two days, with average temperatures throughout the rest of May.  With our current research, we aim to enhance the temperature-based phenology model to provide more detailed recommendations.  We are researching ways to optimize the timing of generation-specific interventions, thereby providing prevention of economic damage of subsequent generations. The number of generations of grape berry moth has been increasing from the traditional three generations per year to four plus. First, and most obvious, adding generations increases the overall attack potential. Second, and largely ignored, adding generations may increase the developmental asynchrony of the population. Given the already narrow time-window of vulnerable life stages, and changes in current and future insecticides, such developmental asynchrony increases the risk that late-season generations will require more than one insecticidal application to achieve control below industry-mandated economic thresholds.

The timing of chemical control of GBM is particularly challenging because the stages most vulnerable to insecticidal applications reside inside the berry for the majority of their life cycles. The result is an extremely narrow management window. (See http://newa.cornell.edu/index.php?page=berry-moth for the online forecasting tool for your growing regions). The early season developmental synchrony in GBM is caused by the relatively synchronous forcing of diapause, as adults emerge from diapausing pupae in late spring. Later in the season the generations become less and less synchronized and the peaks of emergence become blurred.  We are exploring the correlation with GBM spring emergence (DD) and the timing of wild grape bloom and the resulting asynchrony of the subsequent generations. Presently the wild grape bloom is used as the biofix for the NEWA GBM phenology forecast model. We expect GBM developmental synchrony to be dependent on multiple factors, most importantly, the rate of emergence in the spring. Our research is exploring the possibility that the closer the GBM spring emergence coincides with grape bloom the greater the survivorship of the first generation of GBM. Consequently, a large first generation emergence would result in subsequent generations, all of which would emerge in the presences of suitable hosts, exponentially proliferating. For example, in the Lake Erie grape growing region the wild grape bloom usually occurs around the first week in June and the GBM peak in emergence occurs around the end of May.  However, if we experience a very warm spring and the GBM emerge sooner than the wild grape blooms, they will emerge with no suitable host and less of them will survive. Such enhanced models will allow for more adaptive generation-specific protocols of management, and could include novel control strategies.  According to this model, we are expecting another heavy infestation of grape berry moth this year.

Early Season Insects:

Grape Flea Beetle– also known as the steely beetle. These beetles are small (3/16”) and metallic blue in color. Beetles overwinter in the adult stage and emerge as grape buds begin to swell, with one generation per year.  This beetle primarily attacks buds of wild and cultivated grapevines.  They are one of the first insect pests to appear in the vineyards in the spring. The most significant injury caused by this pest is due to adults feeding on swollen grape buds, often destroying the developing bud. They have the potential of causing considerable damage under the right conditions; specifically when we get a prolonged swollen bud stage. Look for damage from steely beetle along the edges of the vineyard. By about 1/2” growth the threat of economic loss from this pest is over. Infestations are worse on wooded edges. They get their name from their ability to jump.

Climbing Cutworms: There are several species of cutworm larvae feed on grape buds during the swell stage. The injury to buds can be confused with grape flea beetle damage. The moths are night flyers and the larvae are night feeders. Both stages hide during the day. Larvae have a brown to gray coloration with darker stripes or dots along the body, and are 30-36 mm long. Vineyards with weed cover under the trellis and areas with sandy soils are at greater risk for injury. The greatest economic injury occurs during bud swell in the spring. Scout frequently during this time.

3 – 12 INCH SHOOT GROWTH

Banded Grape Bug and/or Lygocoris inconspicuous – both of these insects have piercing and sucking type mouthparts. Banded grape bug nymphs have antennae with black and white bands, green/brown bodies and are <1/2”. Lygocoris inconspicuous nymphs are slightly smaller with light green antennae (no bands) and light green bodies. Nymphs (immature stage) of both insects feed on developing flower clusters by piercing florets, pedicels and rachises. Begin scouting when shoots are 3 – 5” in length and continue until shoots are at least 12”. See scouting video, below – Banded Grape Bug LERGPvids:

Grape Phylloxera (leaf form)Grape Phylloxera. Grape phylloxera is an aphid-like insect with a complex life-cycle that causes feeding galls on either roots or leaves. The life cycle is different for the foliar and root forms of this insect. The root form is the more destructive of the 2 forms but is managed by grafting susceptible varieties to phylloxera resistant/tolerant rootstocks. Leaf galls are in the shape of pouches or and can contain several adults and hundreds of eggs or immature stages. Root galls are swellings on the root, sometimes showing a hook shape where the phylloxera feed at the elbow of the hook. At high densities, leaf galls can cause reduced photosynthesis. Root galls likely reduce root growth, the uptake of nutrients and water, and can create sites for invasion of pathogenic fungi. There is a wide range in susceptibility of grape varieties to both gall types. Begin scouting early in the season. Galls may become evident as soon as the 3-5 leaf stage so carefully examine the undersides of terminal leaves for warty looking, green to reddish growths. An insecticide application can be applied when first galls are forming. The most reliable method to determine if crawlers are active is to cut galls open and observe for presence of nymphs. Crawlers are extremely small so a good hand lens is needed.

Phylloxera Nymphs (Crawlers) Photo From: http://www.virginiafruit.ento.vt.edu/phylloxera.html

Phylloxera Nymphs (Crawlers) Photo From: http://www.virginiafruit.ento.vt.edu/phylloxera.html

Additional Insect Pests – During this time period a number of other insects (i.e., grape plume moth, grapevine epimenus, 8 – spotted forester, tumid/tomato gallmaker, grape cane gallmaker, and grape cane girdler) may also be present in the vineyard. Although injury from these insects may look alarming, damage is usually cosmetic and insecticide applications are rarely needed.

For more detailed information, please see: Andy Muza’s blog last spring: Grape Insect Pests to Watch for from: Bud Swell through Immediate Pre-Bloom Stages

Fact sheets on grape insect pests can be found at the following sites: Please click on the links below for more fact sheets specifically on insect pests found in the vineyard.